

Python basics

Welcome to Python Basics! I have written this book to provide an easy and
practical introduction to Python. The book is not intended to be a comprehensive
reference guide to Python, but rather the goal is to give you a basic
familiarity with Python and enable you to quickly write your own programs.

Note

If you have suggestions for improvements, I would be happy to
receive them.

Introduction

About Python

You may be asking yourself why you should learn Python. There are many
programming languages from C and C++ to Java, Lua and Go.

[image: TIOBE Index für Oktober 2022]
TIOBE Index für Oktober 2022 [https://www.tiobe.com/tiobe-index/]

Python has become very widely used and one of the reasons might be that it runs
on many different platforms, from IoT devices to common operating systems to
supercomputers. It can be used well for developing small applications and fast
prototypes. In the process, there are countless software libraries to make your
work easier.

Python is a modern programming language developed by Guido van Rossum in the
1990s.

See also

	The Origins of Python [https://inference-review.com/article/the-origins-of-python] by Lambert
Meertens

Some strengths of Python are

	ease of use
	Some of the reasons for this are that types are associated with objects, not
variables; a variable can be assigned values of any type and a list can
contain objects of different types. Also, the syntax rules are very simple
and you can quickly learn to write useful code.

[image: Python – and programming is fun again!]

XKCD: Python [https://xkcd.com/353]

	Expressive power
	Often you can achieve much more in a few lines of code than in other
languages. As a result, you can complete your projects more quickly, and
debugging and maintenance are also much easier.

	Readability
	The easy readability of Python code simplifies debugging and maintenance.
One of the ways Python achieves this is by requiring indentation.

	Completeness
	With the installation of Python, everything essential needed for programming
with Python is already available, emails, websites, databases, without the
need to install additional libraries.

	Platform independence
	Python runs on many platforms: Windows, Mac, Linux etc /et cetera).
There are even variants that run on Java
(Jython [https://www.jython.org/]) and .NET (IronPython [https://ironpython.net/]).

	Open Source
	You can download Python and use it freely for developing commercial or
private applications. Python is used and promoted by many established
companies, including Google, Meta and Bloomberg. And if you want to give
something back, you are also welcome to do so : Python Software Foundation
Sponsorship [https://www.python.org/psf/sponsorship/]

Python has some advantages, but no language is the best solution in all areas.
For example, Python performs less well in the following areas:

	Speed
	Python is not a fully compiled language and code is first compiled into
bytecode before being executed by the Python interpreter. While there are
some tasks, such as string parsing with regular expressions, for which
Python provides efficient implementations, and which are as fast as a C
program, Python programs will still be slower than C programs in most cases.
However, this rarely plays a decisive role, since there are already many
Python modules that use C internally.

See also

	Performance [https://www.python4data.science/en/latest/performance/index.html]

	Diverse libraries
	Python already has a lot of libraries, but in some cases you will only find
suitable libraries in other languages. For most problems that need to be
solved programmatically, however, Python’s library support is excellent.

	Variable types
	Unlike in many other languages, variables are not containers, but rather
labels that refer to various objects: Integers, strings, class instances and
more. Some find it a disadvantage that Python does not simply perform type
validation here, but the number of type errors is usually manageable and the
flexibility of dynamic typing usually outweighs the problems.

	Support for mobile devices
	Even though mobile devices have proliferated in recent years, Python does
not have a strong presence in this area. While there are a few options to
deploy and run Python on mobile devices, this is not always easy.

	Support for concurrent computation
	Processors with multiple cores are now widespread and lead to significant
performance gains in many areas. However, the standard implementation of
Python is not designed to use multiple cores.

See also

	Introduction to multithreading, multiprocessing and async [https://www.python4data.science/en/latest/performance/multiprocessing-threading-async.html]

Installation

The installation of Python is simple. The first step is to download the latest
version from www.python.org/downloads [https://www.python.org/downloads/].
The tutorial is based on Python 3.10, but if you have Python 3.7 or 3.8
installed, that is no problem either.

Linux
Most Linux distributions have Python already installed. If a precompiled
version of Python exists in your Linux distribution, I recommend you to use
it.

macOS
You need a Python version that matches your macOS and processor. Once you
have determined the correct version, you can download the image file, mount
it with a double click and then start the installation programme contained
in it. Python will then be in the Applications folder.

If you use Homebrew [https://brew.sh/], you can also install Python in the
terminal with:

$ brew install python3

Windows
Python can be installed for most Windows versions after Windows 7 with the
Python installer in three steps:

	Download the latest Python Releases for Windows [https://www.python.org/downloads/windows/] installer, for example
Windows installer (64-bit) [https://www.python.org/ftp/python/3.10.6/python-3.10.6-amd64.exe].

	Start the installation programme. If you have the necessary permissions,
install Python with the option Install launcher for all users. This
should install Python in C:\Program Files\Python310-64. Also,
Add Python 3.10 to PATH should be activated so that this path to the
Python installation is also entered in the list of PATH environment
variables.

	Finally, you can now check the installation by entering the following in
the command prompt:

C:\> python -V
Python 3.10.6

 Editors

Editors

Interactive Shell

With the interactive shell you can easily run most of the examples in this
tutorial. Later, you will also learn how to easily include code written to a
file as a module.

Linux
Type python3 in the terminal:

$ python3
Python 3.10.4 (default, Mar 23 2022, 17:29:05)
[GCC 9.4.0] on linux
Type "help", "copyright", "credits" or "license" for more information.
>>>

macOS
Open a terminal window and enter python3:

$ python3
Python 3.10.4 (v3.10.4:9d38120e33, Mar 23 2022, 17:29:05) [Clang 13.0.0 (clang-1300.0.29.30)] on darwin
Type "help", "copyright", "credits" or "license" for more information.
>>>

Note

If you get the error message Command not found, you can run
Update Shell Profile, which can be found in
Applications/Python3.10.

Windows
You can start the interactive Python shell in Start ‣
Applications ‣ Python 3.10.

Alternatively, you can search for the directly executable file
Python.exe, for example in
C:\Users\VEIT\AppData\Local\Programs\Python\Python310-64 and
then double-click.

 Exploring Python

Exploring Python

Whether you use IDLE or the interactive shell, there are some useful functions
to explore Python.

help()

help() has two different modes. When you type help(), you call the help
system, which you can use to get information about modules, keywords, and other
topics. When you are in the help system, you will see a prompt with help>.
You can now enter a module name, for example float, to search the Python
documentation [https://docs.python.org/] for that type.

help() is part of the pydoc [https://docs.python.org/3/library/pydoc.html] library, which
provides access to the documentation built into Python libraries. Since every
Python installation comes with full documentation, you have all the
documentation at your fingertips even offline.

Alternatively, you can use help() more specifically by passing a type or
variable name as a parameter, for example:

>>> x = 4.2
>>> help(x)
Help on float object:

class float(object)
 | float(x=0, /)
 |
 | Convert a string or number to a floating point number, if possible.
 |
 | Methods defined here:
 |
 | __abs__(self, /)
 | abs(self)
...

dir(), globals() and locals()

dir() [https://docs.python.org/3/library/functions.html#dir] is another useful function that lists objects in a specific
namespace. If you use it without parameters, you can
find out which methods and data are available locally. Alternatively, it can
also list objects for a module or type.

>>> dir()
['__annotations__', '__builtins__', '__doc__', '__loader__', '__name__', '__package__', '__spec__', 'x']
>>> dir(x)
['__abs__', '__add__', '__bool__', '__ceil__', '__class__', '__delattr__', '__dir__', '__divmod__', '__doc__', '__eq__', '__float__', '__floor__', '__floordiv__', '__format__', '__ge__', '__getattribute__', '__getformat__', '__getnewargs__', '__getstate__', '__gt__', '__hash__', '__init__', '__init_subclass__', '__int__', '__le__', '__lt__', '__mod__', '__mul__', '__ne__', '__neg__', '__new__', '__pos__', '__pow__', '__radd__', '__rdivmod__', '__reduce__', '__reduce_ex__', '__repr__', '__rfloordiv__', '__rmod__', '__rmul__', '__round__', '__rpow__', '__rsub__', '__rtruediv__', '__setattr__', '__sizeof__', '__str__', '__sub__', '__subclasshook__', '__truediv__', '__trunc__', 'as_integer_ratio', 'conjugate', 'fromhex', 'hex', 'imag', 'is_integer', 'real']

In contrast to dir() [https://docs.python.org/3/library/functions.html#dir], both globals() [https://docs.python.org/3/library/functions.html#globals] and locals() [https://docs.python.org/3/library/functions.html#locals]
display the values associated with the objects. Currently, both functions return
the same thing:

>>> globals()
{'__name__': '__main__', '__doc__': None, '__package__': None, '__loader__': <class '_frozen_importlib.BuiltinImporter'>, '__spec__': None, '__annotations__': {}, '__builtins__': <module 'builtins' (built-in)>, 'x': 4.2}

 Style

Style

Indentation and blocks

Python differs from most other programming languages because it uses indentation
to determine structure (that is, to determine what the while clause of a condition etc.
represents). Most other languages use curly braces to do this. In the following
example, the indentation of lines 3–6 determines that they belong to the
while statement:

1>>> x, y = 6, 3
2>>> while x > y:
3... x -= 1
4... if x == 4:
5... break
6... print(x)

Indentations to structure the code instead of curly braces takes a little
getting used to, but offers significant advantages:

	You can have neither missing nor too many brackets. Also, you no longer have
to search for the bracket that might match earlier brackets.

	The visual structure of the code reflects its actual structure, making it much
easier to understand.

	Python coding styles are mostly uniform; in other words, your code will mostly
look very similar to that of others.

Comments

Most of the time, anything that follows # is a comment and is ignored when
the code is executed. The obvious exception is # in a string:

>>> x = "# This is a string and not a comment"

Basic Python style

In Python, there are relatively few restrictions on coding style, with the
obvious exception that code must be divided into blocks by indentation. Even in
this case, how (tabs or spaces) and how far indentation is used is not
prescribed. However, there are preferred stylistic conventions for Python, which
are contained in the Python Enhancement Proposal (PEP) 8. A selection of
Python conventions can be found in the following table:

	Context

	Recommendation

	Example

	Module and package
names

	short, lower case,
underscores only if necessary

	math, sys

	Function names

	lower case, underscores if
necessary

	my_func()

	Variable names

	lower case, with underscores
if necessary

	my_var

	Class names

	CamelCase notation

	MyClass

	Constant names

	Capital letters with
underscores

	PI

	Indentation

	Four spaces per level, no
tabs

	

	Compare

	not explicitly with True
or False, see also
Boolean values and expressions

	if my_var:,
if not my_var:

See also

	PEP 8 [https://peps.python.org/pep-0008/]

I strongly recommend following the conventions of PEP 8. They are tried and
tested, and make your code easier to understand for yourself and others.

 Variables and expressions

Variables and expressions

Variables

The most commonly used command in Python is assignment. The Python code to
create a Vairiable called x that is to be given the value π is:

>>> pi = 3.14159

In Python, unlike many other programming languages, neither a variable
declaration nor an end-of-line delimiter is necessary. The line is terminated by
the end of the line. Variables are created automatically when they are assigned
for the first time.

Note

In Python, variables are labels that refer to objects. Any number of labels
can refer to the same object, and if that object changes, so does the value
to which all those variables refer. To better understand what this means, see
the following example:

>>> x = [1, 2, 3]
>>> y = x
>>> y[0] = 4
>>> print(x)
[4, 2, 3]

However, variables can also refer to constants:

>>> x = 1
>>> y = x
>>> z = y
>>> y = 4
>>> print(x,y,z)
1 4 1

In this case, after the third line, x, y and z all refer to the
same immutable integer object with the value 1. The next line, y = 4,
causes y to refer to the integer object 4, but this does not change
the references of x or z.

Python variables can be set to any object, whereas in many other languages
variables can only be stored in the declared type.

Variable names are case-sensitive and can contain any alphanumeric character as
well as underscores, but must begin with a letter or underscore.

Note

If you receive a SyntaxError, check whether the variable name is a
keyword. Keywords are reserved for use in Python language constructs, so you
cannot turn them into variables. After calling help() you can enter
keywords to get the keywords:

>>> help()
...
help> keywords
Here is a list of the Python keywords. Enter any keyword to get more help.
False class from or
None continue global pass
True def if raise
and del import return
as elif in try
assert else is while
async except lambda with
await finally nonlocal yield
break for not

Note

You can use a variable name to overwrite built-in functions, types and other
objects so that they can then only be accessed via the builtins [https://docs.python.org/3/library/builtins.html] module. These variable names should therefore
never be used. You can obtain a list of the __builtins__ objects
with :

>>> dir(__builtins__)
['ArithmeticError', 'AssertionError', 'AttributeError', 'BaseException', 'BaseExceptionGroup', 'BlockingIOError', 'BrokenPipeError', 'BufferError', 'BytesWarning', 'ChildProcessError', 'ConnectionAbortedError', 'ConnectionError', 'ConnectionRefusedError', 'ConnectionResetError', 'DeprecationWarning', 'EOFError', 'Ellipsis', 'EncodingWarning', 'EnvironmentError', 'Exception', 'ExceptionGroup', 'False', 'FileExistsError', 'FileNotFoundError', 'FloatingPointError', 'FutureWarning', 'GeneratorExit', 'IOError', 'ImportError', 'ImportWarning', 'IndentationError', 'IndexError', 'InterruptedError', 'IsADirectoryError', 'KeyError', 'KeyboardInterrupt', 'LookupError', 'MemoryError', 'ModuleNotFoundError', 'NameError', 'None', 'NotADirectoryError', 'NotImplemented', 'NotImplementedError', 'OSError', 'OverflowError', 'PendingDeprecationWarning', 'PermissionError', 'ProcessLookupError', 'RecursionError', 'ReferenceError', 'ResourceWarning', 'RuntimeError', 'RuntimeWarning', 'StopAsyncIteration', 'StopIteration', 'SyntaxError', 'SyntaxWarning', 'SystemError', 'SystemExit', 'TabError', 'TimeoutError', 'True', 'TypeError', 'UnboundLocalError', 'UnicodeDecodeError', 'UnicodeEncodeError', 'UnicodeError', 'UnicodeTranslateError', 'UnicodeWarning', 'UserWarning', 'ValueError', 'Warning', 'ZeroDivisionError', '__build_class__', '__debug__', '__doc__', '__import__', '__loader__', '__name__', '__package__', '__spec__', 'abs', 'aiter', 'all', 'anext', 'any', 'ascii', 'bin', 'bool', 'breakpoint', 'bytearray', 'bytes', 'callable', 'chr', 'classmethod', 'compile', 'complex', 'copyright', 'credits', 'delattr', 'dict', 'dir', 'divmod', 'enumerate', 'eval', 'exec', 'exit', 'filter', 'float', 'format', 'frozenset', 'getattr', 'globals', 'hasattr', 'hash', 'help', 'hex', 'id', 'input', 'int', 'isinstance', 'issubclass', 'iter', 'len', 'license', 'list', 'locals', 'map', 'max', 'memoryview', 'min', 'next', 'object', 'oct', 'open', 'ord', 'pow', 'print', 'property', 'quit', 'range', 'repr', 'reversed', 'round', 'set', 'setattr', 'slice', 'sorted', 'staticmethod', 'str', 'sum', 'super', 'tuple', 'type', 'vars', 'zip']

Expressions

Python supports arithmetic and similar expressions. The following code
calculates the average of x and y and stores the result in the variable
z:

>>> x = 1
>>> y = 2
>>> z = (x + y) / 2

Note

Arithmetic operators that use only integers do not always return an integer.
As of Python 3, division returns a floating point number. If you want the
traditional integer division to return an integer, you can use //
instead.

 Data types

Data types

Python has several built-in data types, such as Numbers (integers,
floating point numbers, complex numbers), strings,
Lists, Tuples, Dictionaries, Sets and Files. These
data types can be manipulated using language operators, built-in functions,
library functions or a data type’s own methods.

You can also define your own classes and create your own class instances. For
these class instances, you can define methods as well as manipulate them using
the language operators and built-in functions for which you have defined the
appropriate special method attributes.

Note

In the Python documentation and in this book, the term object is used for
instances of any Python data type, not just what many other languages would
call class instances. This is because all Python objects are instances of one
class or another.

Python has several built-in data types, from scalars like numbers and boolean
values to more complex structures like lists, dictionaries and files.

 Numbers

Numbers

Python’s four number types are integers, floating point numbers, complex numbers
and Boolean numbers:

	Type

	Examples

	Integers

	-1, 42, 90000000

	Floats

	90000000.0, -0.005, 9e7, -5e-3

	Complex numbers

	3 + 2j, -4- 2j, 4.2 + 6.3j

	Boolean numbers

	True, False

They can be manipulated with the arithmetic operators:

	Operator

	Description

	+

	Addition

	-

	Subtraction

	*

	Multiplication

	/, //

	Division [1]

	**

	Exponentiation

	%

	Modulus

[1]
Dividing integers with / results in a float, and dividing integers
with // results in an integer that is truncated.

Note

Integers can be unlimited in size, limited only by the available memory.

Examples:

>>> 8 + 3 - 5 * 3
-4
>>> 8 / 3
2.6666666666666665
>>> 8 // 3
2
>>> x = 4.2 ** 3.4
>>> x
131.53689544409096
>>> 9e7 * -5e-3
-450000.0
>>> -5e-3 ** 3
-1.2500000000000002e-07

See also

	Julia Evans: Examples of floating point problems [https://jvns.ca/blog/2023/01/13/examples-of-floating-point-problems/]

	David Goldberg: What Every Computer Scientist Should Know About
Floating-Point Arithmetic [https://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html]

Complex numbers

Complex numbers consist of a real part and an imaginary part [https://en.wikipedia.org/wiki/Imaginary_number], which is given the suffix
j in Python.

>>> 7 + 2j
(7+2j)

Note

Python expresses the resulting complex number in parentheses to indicate
that the output represents the value of a single object:

>>> (5+3j) ** (3+5j)
(-7.04464115622119-11.276062812695923j)

>>> x = (5+3j) * (6+8j)
>>> x
(6+58j)
>>> x.real
6.0
>>> x.imag
58.0

Complex numbers consist of a real part and an imaginary part with the suffix
j. In the preceding code, the variable x is assigned to a complex
number. You can get its „real“ part with the attribute notation x.real and
the „imaginary“ part with x.imag.

Built-in numerical functions

Several built-in functions can work with numbers:

	abs() [https://docs.python.org/3/library/functions.html#abs]
	returns the absolute value of a number. Here, as argument can be an integer,
a floating point number or an object that implements __abs__(). With
complex numbers as arguments, their absolute value is returned.

	divmod() [https://docs.python.org/3/library/functions.html#divmod]
	takes two (non-complex) numbers as arguments and returns a pair of numbers
consisting of their quotient and the remainder if integer division is used.

	float [https://docs.python.org/3/library/functions.html#float]
	returns a floating point number formed from a number or string x.

	hex() [https://docs.python.org/3/library/functions.html#hex]
	converts an integer number to a lowercase hexadecimal string with the
prefix 0x.

	int [https://docs.python.org/3/library/functions.html#int]
	returns an integer object constructed from a number or string x, or
0 if no arguments are given.

	max() [https://docs.python.org/3/library/functions.html#max]
	returns the largest element in an iterable [https://docs.python.org/3/glossary.html#term-iterable] or the largest of
two or more arguments.

	min() [https://docs.python.org/3/library/functions.html#min]
	returns the smallest element in an iterable or the smallest of two or more
arguments.

	oct() [https://docs.python.org/3/library/functions.html#oct]
	converts an integer number to an octal string with the prefix 0o. The
result is a valid Python expression. If x is not a Python int()
object, it must define an __index__() method that returns an integer.

	pow() [https://docs.python.org/3/library/functions.html#pow]
	returns base as a power of exp.

	round() [https://docs.python.org/3/library/functions.html#round]
	returns a number rounded to ndigits after the decimal point. If ndigits
is omitted or is None, the nearest integer to the input is returned.

Boolean values

Boolean values are used in the following examples:

>>> x = False
>>> x
False
>>> not x
True

>>> y = True * 2
>>> y
2

Apart from their representation as True and False, Boolean values
behave like the numbers 1 (True) and 0 (False).

Advanced numerical functions

More advanced numerical functions such as trigonometry, as well as some useful
constants, are not built into Python, but are provided in a standard module
called math [https://docs.python.org/3/library/math.html]. Module will
be explained in more detail later. For now, suffice it to say that you need to
make the maths functions available in this section by importing math:

import math

Built-in functions are always available and are called using standard function
call syntax. In the following code, round is called with a float as the
input argument.

>>> round(2.5)
2

With ceil from the standard library math and the attribute notation
MODUL.FUNKTION(ARGUMENT) is rounded up:

>>> math.ceil(2.5)
3

The math module provides, among other things

	the number theoretic and representation functions math.ceil() [https://docs.python.org/3/library/math.html#math.ceil],
math.modf() [https://docs.python.org/3/library/math.html#math.modf], math.frexp() [https://docs.python.org/3/library/math.html#math.frexp] and
math.ldexp() [https://docs.python.org/3/library/math.html#math.ldexp],

	the power and logarithmic functions math.exp() [https://docs.python.org/3/library/math.html#math.exp],
math.log() [https://docs.python.org/3/library/math.html#math.log], math.log10() [https://docs.python.org/3/library/math.html#math.log10], math.pow() [https://docs.python.org/3/library/math.html#math.pow]
and math.sqrt() [https://docs.python.org/3/library/math.html#math.sqrt],

	the trigonometric functions math.acos() [https://docs.python.org/3/library/math.html#math.acos],
math.asin() [https://docs.python.org/3/library/math.html#math.asin], math.atan() [https://docs.python.org/3/library/math.html#math.atan],
math.atan2() [https://docs.python.org/3/library/math.html#math.atan2], math.ceil() [https://docs.python.org/3/library/math.html#math.ceil],
math.cos() [https://docs.python.org/3/library/math.html#math.cos], math.hypot() [https://docs.python.org/3/library/math.html#math.hypot] and
math.sin() [https://docs.python.org/3/library/math.html#math.sin],

	the hyperbolic functions math.cosh() [https://docs.python.org/3/library/math.html#math.cosh],
math.sinh() [https://docs.python.org/3/library/math.html#math.sinh] and math.tanh() [https://docs.python.org/3/library/math.html#math.tanh]

	and the constants math.e [https://docs.python.org/3/library/math.html#math.e] and math.pi [https://docs.python.org/3/library/math.html#math.pi].

Advanced functions for complex numbers

The functions in the math [https://docs.python.org/3/library/math.html] module are not
applicable to complex numbers; one of the reasons for this is probably that the
square root of -1 is supposed to produce an error. Therefore, similar
functions for complex numbers have been provided in the cmath [https://docs.python.org/3/library/cmath.html] module:

cmath.acos() [https://docs.python.org/3/library/cmath.html#cmath.acos], cmath.acosh() [https://docs.python.org/3/library/cmath.html#cmath.acosh], cmath.asin() [https://docs.python.org/3/library/cmath.html#cmath.asin], cmath.asinh() [https://docs.python.org/3/library/cmath.html#cmath.asinh], cmath.atan() [https://docs.python.org/3/library/cmath.html#cmath.atan], cmath.atanh() [https://docs.python.org/3/library/cmath.html#cmath.atanh], cmath.cos() [https://docs.python.org/3/library/cmath.html#cmath.cos], cmath.cosh() [https://docs.python.org/3/library/cmath.html#cmath.cosh], python3:cmath.e(), cmath.exp() [https://docs.python.org/3/library/cmath.html#cmath.exp], cmath.log() [https://docs.python.org/3/library/cmath.html#cmath.log], cmath.log10() [https://docs.python.org/3/library/cmath.html#cmath.log10], python3:cmath.pi(), cmath.sin() [https://docs.python.org/3/library/cmath.html#cmath.sin], cmath.sinh() [https://docs.python.org/3/library/cmath.html#cmath.sinh], cmath.sqrt() [https://docs.python.org/3/library/cmath.html#cmath.sqrt], cmath.tan() [https://docs.python.org/3/library/cmath.html#cmath.tan], cmath.tanh() [https://docs.python.org/3/library/cmath.html#cmath.tanh].

To make it clear in the code that these functions are special functions for
complex numbers, and to avoid name conflicts with the more normal equivalents,
it is recommended to simply import the module to explicitly refer to the
cmath package when using the function, for example:

>>> import cmath
>>> cmath.sqrt(-2)
1.4142135623730951j

Warning

Now it becomes clearer why we do not recommend importing all functions of a
module with from MODULE import *. If you would import the module
math first and then the module cmath, the functions in cmath
would have priority over those of math. Also, when understanding the
code, it is much more tedious to find out the source of the functions used.

Rounding half to even

Usually Python calculates floating point numbers according to the IEEE 754 [https://en.wikipedia.org/wiki/IEEE_754] standard, rounding down numbers in
the middle half of the time and rounding up in the other half to avoid
statistical drift in longer calculations. Decimal [https://docs.python.org/3/library/decimal.html#decimal.Decimal] and ROUND_HALF_UP [https://docs.python.org/3/library/decimal.html#decimal.ROUND_HALF_UP] from the decimal module are therefore needed
for rounding half to even [https://en.wikipedia.org/wiki/Rounding#Rounding_half_to_even]:

>>> import decimal
>>> num = decimal.Decimal("2.5")
>>> rounded = num.quantize(decimal.Decimal("0"), rounding = decimal.ROUND_HALF_UP)
>>> rounded
Decimal('3')

Numerical calculations

The standard Python installation is not well suited for intensive numerical
calculations due to speed limitations. But the powerful Python extension
NumPy [https://www.python4data.science/en/latest/workspace/numpy/index.html] provide highly efficient
implementations of many advanced numerical operations. The focus is on array
operations, including multi-dimensional matrices and advanced functions such as
the fast Fourier transform.

Built-in modules for numbers

The Python standard library contains a number of built-in modules that you can
use to manage numbers:

	Module

	Description

	numbers [https://docs.python.org/3/library/numbers.html#module-numbers]

	for numeric abstract base classes

	math [https://docs.python.org/3/library/math.html#module-math],
cmath [https://docs.python.org/3/library/cmath.html#module-cmath]

	for mathematical functions for real and complex numbers

	decimal [https://docs.python.org/3/library/decimal.html#module-decimal]

	for decimal fixed-point and floating-point arithmetic

	statistics [https://docs.python.org/3/library/statistics.html#module-statistics]

	for functions for calculating mathematical statistics

	fractions [https://docs.python.org/3/library/fractions.html#module-fractions]

	for rational numbers

	random [https://docs.python.org/3/library/random.html#module-random]

	for generating pseudo-random numbers and selections and for shuffling
sequences

	itertools [https://docs.python.org/3/library/itertools.html#module-itertools]

	for functions that create iterators for efficient loops

	functools [https://docs.python.org/3/library/functools.html#module-functools]

	for higher-order functions and operations on callable objects

	operator [https://docs.python.org/3/library/operator.html#module-operator]

	for standard operators as functions

 Lists

Lists

Python has a powerful built-in list type:

1 []
2 [1]
3 [1, "2.", 3.0, ["4a", "4b"], (5.1,5.2)]

A list can contain a mixture of other types as elements, including strings,
tuples, lists, dictionaries, functions, file objects and any kind of number.

A list can be indexed from the front or the back. You can also refer to a
sub-segment of a list using slice notation:

 1 >>> x = [1, "2.", 3.0, ["4a", "4b"], (5.1,5.2)]
 2 >>> x[0]
 3 '1'
 4 >>> x[1]
 5 '2.'
 6 >>> x[-1]
 7 (5.1, 5.2)
 8 >>> x[-2]
 9 ['4a', '4b']
10 >>> x[1:-1]
11 ['2.', 3.0, ['4a', '4b']]
12 >>> x[0:3]
13 [1, '2.', 3.0]
14 >>> x[:3]
15 [1, '2.', 3.0]
16 >>> x[-4:-1]
17 ['2.', 3.0, ['4a', '4b']]
18 >>> x[-4:]
19 ['2.', 3.0, ['4a', '4b'], (5.1, 5.2)]

	Lines 2 and 4
	Index from the beginning using positive indices starting with 0 as the
first element.

	Lines 6 and 8
	Index from the back using negative indices starting with -1 as the last
element.

	Lines 10 and 12
	Slice with [m:n], where m is the inclusive start point and n is
the exclusive end point.

	Lines 14, 16 and 18
	A [:n] slice starts at the beginning and an [m:] slice goes to the
end of a list.

You can use this notation to add, remove and replace elements in a list or to
get an element or a new list that is a slice of it, for example:

 1 >>> x = [1, "2.", 3.0, ["4a", "4b"], (5.1,5.2)]
 2 >>> x[1] = "zweitens"
 3 >>> x[2:3] = []
 4 >>> x
 5 [1, 'zweitens', ['4a', '4b'], (5.1, 5.2)]
 6 >>> x[2] = [3.1, 3.2, 3.3]
 7 >>> x
 8 [1, 'zweitens', [3.1, 3.2, 3.3], (5.1, 5.2)]
 9 >>> x[2:]
10 [[3.1, 3.2, 3.3], (5.1, 5.2)]

	Line 3
	The size of the list increases or decreases if the new slice is larger or
smaller than the slice it replaces.

Slices also allow a step-by-step selection between the start and end indices.
The default value for an unspecified stride is 1, which takes every element
from a sequence between the indices. With a stride of 2, every second
element is taken and so on:

1>>> x[0:3:2]
2[1, [3.1, 3.2, 3.3]]
3>>> x[::2]
4[1, [3.1, 3.2, 3.3]]
5>>> x[1::2]
6['zweitens', (5.1, 5.2)]

The stride value can also be negative. A -1 stride means counting from right
to left:

1>>> x[3:0:-2]
2[(5.1, 5.2), 'zweitens']
3>>> x[::-2]
4[(5.1, 5.2), 'zweitens']
5>>> x[::-1]
6[(5.1, 5.2), [3.1, 3.2, 3.3], 'zweitens', 1]

	Line 1
	To use a negative increment, the start slice should be larger than the end
slice.

	Line 3
	The exception is if you omit the start and end indices.

	Line 5
	A stride of -1 reverses the order.

Some functions of the slice notation can also be executed with special
operations, which improves the readability of the code:

1>>> x.reverse()
2>>> x
3[(5.1, 5.2), [3.1, 3.2, 3.3], 'zweitens', 1]

You can also use the following built-in functions (len, max and
min), some operators (in, + and *), the del statement and
the list methods (append, count, extend, index, insert,
pop, remove, reverse and sort) for lists:

1 >>> len(x)
2 4
3 >>> x + [0, -1]
4 [(5.1, 5.2), [3.1, 3.2, 3.3], 'zweitens', 1, 0, -1]
5 >>> x.reverse()
6 >>> x
7 [1, 'zweitens', [3.1, 3.2, 3.3], (5.1, 5.2)]

	Line 3
	The operators + and * each create a new list, leaving the original
list unchanged.

	Line 5
	The methods of a list are called using the attribute notation for the list
itself: :samp:`{LIST}.METHOD(ARGUMENTS).

Some of these operations repeat functions that can be performed using slice
notation, but they improve the readability of the code.

See also

	Select and filter data with pandas [https://www.python4data.science/en/latest/workspace/pandas/select-filter.html]

Summary

	data type

	mutable

	ordered

	indexed

	duplicates

	list

	✅

	✅

	✅

	✅

 Tuples

Tuples

Tuples are similar to lists but are immutable, so they cannot be changed once
they have been created. The operators (in, + and *) and built-in
functions (len, max and min) work with them in the same way as with
lists, as none of these functions change the original. The index and slice
notations work in the same way to get elements or slices, but cannot be used to
add, remove or replace elements. Also, there are only two tuple methods:
count and index. An important purpose of tuples is to be used as keys
for dictionaries. They are also more efficient to use when you don’t need a
change facility.

1()
2(1,)
3(1, 2, 3, 5)
4(1, "2.", 3.0, ["4a", "4b"], (5.1,5.2))

	Line 2
	A tuple with one element requires a comma.

	Line 4
	A tuple, like a Liste, can contain a mixture of other types
as elements, including any Numbers, Strings, Tuples,
Lists, Dictionaries, Files and functions.

A list can be converted to a tuple using the built-in tuple function:

>>> x = [1, 2, 3, 5]
>>> tuple(x)
(1, 2, 3, 5)

Conversely, a tuple can be converted into a list using the built-in list
function:

>>> x = (1, 2, 3, 4)
>>> list(x)
[1, 2, 3, 4]

The advantages of tuples over Lists are:

	Tuples are faster than lists.

If you want to define a constant set of values and just cycle through them,
you should use a tuple instead of a list.

	Tuples can not be modified and are therefore write-protected.

	Tuples can be used as keys in Dictionaries and values in Sets.

Summary

	data type

	mutable

	ordered

	indexed

	duplicates

	tuple

	❌

	✅

	✅

	✅

 Sets

Sets

A set in Python is an unordered collection of objects used in situations where
membership and uniqueness to the set are the most important information of the
object. The in operator runs faster with sets than with Lists:

1 >>> x = set([1, 2, 3, 2, 4])
2 >>> x
3 {1, 2, 3, 4}
4 >>> 1 in x
5 True
6 >>> 5 in x
7 False

	Line 1
	You can create a set by applying set to a sequence like a list.

	Line 3
	When a sequence is made into a set, duplicates are removed.

	Line 4 and 6
	The keyword is used to check whether an object belongs to a set.

Sets behave like collections of Dictionary keys without
associated values.

However, the speed advantage also comes at a price: sets do not keep the
elements elements in the correct order, whereas Lists and Tuples
do. If the order is important to you, you should use a data structure that
remembers the order.

Summary

	data type

	mutable

	ordered

	indexed

	duplicates

	set

	✅

	❌

	❌

	❌

 Dictionaries

Dictionaries

Python’s built-in dictionary data type provides associative array functionality
implemented using hash tables. The built-in len function returns the number
of key-value pairs in a dictionary. The del statement can be used to delete
a key-value pair. As with Lists , several dictionary methods
(clear [https://docs.python.org/3/library/stdtypes.html#dict.clear], copy [https://docs.python.org/3/library/stdtypes.html#dict.copy], get [https://docs.python.org/3/library/stdtypes.html#dict.get], items [https://docs.python.org/3/library/stdtypes.html#dict.items], keys [https://docs.python.org/3/library/stdtypes.html#dict.keys],
update [https://docs.python.org/3/library/stdtypes.html#dict.update] and values [https://docs.python.org/3/library/stdtypes.html#dict.values]) are
available.

>>> x = {1: "eins", 2: "zwei"}
>>> x[3] = "drei"
>>> x["viertes"] = "vier"
>>> list(x.keys())
[1, 2, 3, 'viertes']
>>> x[1]
'eins'
>>> x.get(1, "nicht vorhanden")
'eins'
>>> x.get(5, "nicht vorhanden")
'nicht vorhanden'

Keys must be of immutable type, including Numbers, Strings and
Tuples.

Warning

Even if you can use different key types in a dictionary, you should avoid
this, as it not only makes it more difficult to read, but also sorting is
also made more difficult.

Values can be any type of object, including mutable types such as Lists
and Dictionaries. If you try to access the value of a key that is not in the
dictionary, a KeyError exception is thrown. To avoid this error, the
dictionary method get optionally returns a custom value if a key is not
contained in a dictionary.

setdefault

setdefault [https://docs.python.org/3/library/stdtypes.html#dict.setdefault] can be used to provide counters for the
keys of a dict, for example:

>>> titles = ["Data types", "Lists", "Sets", "Lists"]
>>> for title in titles:
... titles_count.setdefault(title, 0)
... titles_count[title] += 1
...
>>> titles_count
{'Data types': 1, 'Lists': 2, 'Sets': 1}

Note

Such counting operations quickly became widespread, so the
collections.Counter [https://docs.python.org/3/library/collections.html#collections.Counter] class was later added to the Python standard
library. This class can perform the above-mentioned operations much more
easily:

>>> collections.Counter(titles)
Counter({'Lists': 2, 'Data types': 1, 'Sets': 1})

Merging dictionaries

You can merge two dictionaries into a single dictionary using the
dict.update() [https://docs.python.org/3/library/stdtypes.html#dict.update] method:

>>> titles = {7.0: "Data Types", 7.1: "Lists", 7.2: "Tuples"}
>>> new_titles = {7.0: "Data types", 7.3: "Sets"}
>>> titles.update(new_titles)
>>> titles
{7.0: 'Data types', 7.1: 'Lists', 7.2: 'Tuples', 7.3: 'Sets'}

Note

The order of the operands is important, as 7.0 is duplicated and the
value of the last key overwrites the previous one.

Extensions

	python-benedict [https://github.com/fabiocaccamo/python-benedict]
	dict subclass with keylist/keypath/keyattr support and I/O shortcuts.

	pandas [https://www.python4data.science/en/latest/workspace/pandas/python-data-structures.html]
	can convert Dicts into Series and DataFrames.

 Strings

Strings

The processing of character strings is one of Python’s strengths. There are many
options for delimiting character strings:

"A string in double quotes can contain 'single quotes'."
'A string in single quotes can contain "double quotes"'
'''\tA string that starts with a tab and ends with a newline character.\n'''
"""This is a string in triple double quotes, the only string that contains
real line breaks.""""

Strings can be separated by single (' '), double (" "), triple single
(''' ''') or triple double (""" """) quotes and can contain tab (\t)
and newline (\n) characters. In general, backslashes \ can be used as
escape characters. For example \\ can be used for a single backslash and
\' for a single quote, whereby it does not end the string:

"You don't need a backslash here."
'However, this wouldn\'t work without a backslash.'

Here are other characters you can get with the escape character:

	Escape sequence

	Output

	Description

	\\

	\

	Backslash

	\'

	'

	single quote character

	\"

	"

	double quote character

	\b

	
	Backspace (BS)

	\n

	
	ASCII Linefeed (LF)

	\r

	
	ASCII Carriage Return
(CR)

	\t

	
	Tabulator (TAB)

	u00B5

	µ

	Unicode 16 bit

	U000000B5

	µ

	Unicode 32 bit

	N{SNAKE}

	🐍

	Unicode Emoji name

A normal string cannot be split into multiple lines. The following code will not
work:

"This is an incorrect attempt to insert a newline into a string without
using \n."

However, Python provides strings in triple quotes (""") that allow this and
can contain single and double quotes without backslashes.

Strings are also immutable. The operators and functions that work with them
return new strings derived from the original. The operators (in, + and
*) and built-in functions (len, max and min) work with strings
in the same way as with lists and tuples.

>>> welcome = "Hello pythonistas!\n"
>>> 2 * welcome
'Hello pythonistas!\nHello pythonistas!\n'
>>> welcome + welcome
'Hello pythonistas!\nHello pythonistas!\n'
>>> 'python' in welcome
True
>>> max(welcome)
'y'
>>> min(welcome)
'\n'

The index and slice notation works in the same way to obtain elements or slices:

>>> welcome[0:5]
'Hello'
>>> welcome[6:-1]
'pythonistas!'

However, the index and slice notation cannot be used to add, remove or replace
elements:

 >>> welcome[6:-1] = 'everybody!'
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
TypeError: 'str' object does not support item assignment

string

For strings, the standard Python library string [https://docs.python.org/3/library/string.html]
contains several methods for working with their content, including
str.split() [https://docs.python.org/3/library/stdtypes.html#str.split], str.replace() [https://docs.python.org/3/library/stdtypes.html#str.replace] and str.strip() [https://docs.python.org/3/library/stdtypes.html#str.strip]:

>>> welcome = "hello pythonistas!\n"
>>> welcome.isupper()
False
>>> welcome.isalpha()
False
>>> welcome[0:5].isalpha()
True
>>> welcome.capitalize()
'Hello pythonistas!\n'
>>> welcome.title()
'Hello Pythonistas!\n'
 >>> welcome.strip()
'Hello pythonistas!'
>>> welcome.split(' ')
['hello', 'pythonistas!\n']
>>> chunks = [snippet.strip() for snippet in welcome.split(' ')]
>>> chunks
['hello', 'pythonistas!']
>>> ' '.join(chunks)
'hello pythonistas!'
>>> welcome.replace('\n', '')
'hello pythonistas!'

Below you will find an overview of the most common string methods [https://docs.python.org/3/library/stdtypes.html#string-methods]:

	Method

	Description

	str.count() [https://docs.python.org/3/library/stdtypes.html#str.count]

	returns the number of non-overlapping occurrences of the
string.

	str.endswith() [https://docs.python.org/3/library/stdtypes.html#str.endswith]

	returns True if the string ends with the suffix.

	str.startswith() [https://docs.python.org/3/library/stdtypes.html#str.startswith]

	returns True if the string starts with the prefix.

	str.join() [https://docs.python.org/3/library/stdtypes.html#str.join]

	uses the string as a delimiter for concatenating a sequence
of other strings.

	str.index() [https://docs.python.org/3/library/stdtypes.html#str.index]

	returns the position of the first character in the string if
it was found in the string; triggers a ValueError if it
was not found.

	str.find() [https://docs.python.org/3/library/stdtypes.html#str.find]

	returns the position of the first character of the first
occurrence of the substring in the string; like index,
but returns -1 if nothing was found.

	str.rfind() [https://docs.python.org/3/library/stdtypes.html#str.rfind]

	Returns the position of the first character of the last
occurrence of the substring in the string; returns -1 if
nothing was found.

	str.replace() [https://docs.python.org/3/library/stdtypes.html#str.replace]

	replaces occurrences of a string with another string.

	str.strip() [https://docs.python.org/3/library/stdtypes.html#str.strip],
str.rstrip() [https://docs.python.org/3/library/stdtypes.html#str.rstrip],
str.lstrip() [https://docs.python.org/3/library/stdtypes.html#str.lstrip]

	strip spaces, including line breaks.

	str.split() [https://docs.python.org/3/library/stdtypes.html#str.split]

	splits a string into a list of substrings using the passed
separator.

	str.lower() [https://docs.python.org/3/library/stdtypes.html#str.lower]

	converts alphabetic characters to lower case.

	str.upper() [https://docs.python.org/3/library/stdtypes.html#str.upper]

	converts alphabetic characters to upper case.

	str.casefold() [https://docs.python.org/3/library/stdtypes.html#str.casefold]

	converts characters to lower case and converts all
region-specific variable character combinations to a common
comparable form.

	str.ljust() [https://docs.python.org/3/library/stdtypes.html#str.ljust],
str.rjust() [https://docs.python.org/3/library/stdtypes.html#str.rjust]

	left-aligned or right-aligned; fills the opposite side of the
string with spaces (or another filler character) in order to
obtain a character string with a minimum width.

	str.removeprefix() [https://docs.python.org/3/library/stdtypes.html#str.removeprefix]
str.removesuffix() [https://docs.python.org/3/library/stdtypes.html#str.removesuffix]

	In Python 3.9 this can be used to extract the suffix or file
name.

In addition, there are several methods with which the property of a character
string can be checked:

	Method

	[!#$%…]

	[a-zA-Z]

	[¼½¾]

	[¹²³]

	[0-9]

	str.isprintable() [https://docs.python.org/3/library/stdtypes.html#str.isprintable]

	✅

	✅

	✅

	✅

	✅

	str.isalnum() [https://docs.python.org/3/library/stdtypes.html#str.isalnum]

	❌

	✅

	✅

	✅

	✅

	str.isnumeric() [https://docs.python.org/3/library/stdtypes.html#str.isnumeric]

	❌

	❌

	✅

	✅

	✅

	str.isdigit() [https://docs.python.org/3/library/stdtypes.html#str.isdigit]

	❌

	❌

	❌

	✅

	✅

	str.isdecimal() [https://docs.python.org/3/library/stdtypes.html#str.isdecimal]

	❌

	❌

	❌

	❌

	✅

str.isspace() [https://docs.python.org/3/library/stdtypes.html#str.isspace] checks for spaces:
[\t\n\r\f\v\x1c-\x1f\x85\xa0\u1680…].

re

The Python standard library re [https://docs.python.org/3/library/re.html] also contains
functions for working with strings. However, re offers more sophisticated
options for pattern extraction and replacement than string.

>>> import re
>>> re.sub('\n', '', welcome)
'Hello pythonistas!'

Here, the regular expression is first compiled and then its
re.Pattern.sub() [https://docs.python.org/3/library/re.html#re.Pattern.sub] method is called for the passed text. You can compile
the expression itself with re.compile() [https://docs.python.org/3/library/re.html#re.compile] to create a reusable regex
object that reduces CPU cycles when applied to different strings:

>>> regex = re.compile('\n')
>>> regex.sub('', welcome)
'Hello pythonistas!'

If you want to get a list of all patterns that match the regex object
instead, you can use the re.Pattern.findall() [https://docs.python.org/3/library/re.html#re.Pattern.findall] method:

>>> regex.findall(welcome)
['\n']

Note

To avoid the awkward escaping with \ in a regular expression, you can use
raw string literals such as r'C:\PATH\TO\FILE' instead of the
corresponding 'C:\\PATH\\TO\\FILE'.

re.Pattern.match() [https://docs.python.org/3/library/re.html#re.Pattern.match] and re.Pattern.search() [https://docs.python.org/3/library/re.html#re.Pattern.search] are closely related
to re.Pattern.findall() [https://docs.python.org/3/library/re.html#re.Pattern.findall]. While findall returns all matches in a string,
search only returns the first match and match only returns matches at
the beginning of the string. As a less trivial example, consider a block of text
and a regular expression that can identify most email addresses:

>>> addresses = """Veit <veit@cusy.io>
... Veit Schiele <veit.schiele@cusy.io>
... cusy GmbH <info@cusy.io>
... """
>>> pattern = r'[A-Z0-9._%+-]+@[A-Z0-9.-]+\.[A-Z]{2,4}'
>>> regex = re.compile(pattern, flags=re.IGNORECASE)
>>> regex.findall(addresses)
['veit@cusy.io', 'veit.schiele@cusy.io', 'info@cusy.io']
>>> regex.search(addresses)
<re.Match object; span=(6, 18), match='veit@cusy.io'>
>>> print(regex.match(addresses))
None

regex.match returns None, as the pattern only matches if it is at the
beginning of the string.

Suppose you want to find email addresses and at the same time split each address
into its three components:

	personal name

	domain name

	domain suffix

To do this, you first place round brackets () around the parts of the
pattern to be segmented:

>>> pattern = r'([A-Z0-9._%+-]+)@([A-Z0-9.-]+)\.([A-Z]{2,4})'
>>> regex = re.compile(pattern, flags=re.IGNORECASE)
>>> match = regex.match('veit@cusy.io')
>>> match.groups()
('veit', 'cusy', 'io')

re.Match.groups() [https://docs.python.org/3/library/re.html#re.Match.groups] returns a Tuples that contains all subgroups
of the match.

re.Pattern.findall() [https://docs.python.org/3/library/re.html#re.Pattern.findall] returns a list of tuples if the pattern contains
groups:

>>> regex.findall(addresses)
[('veit', 'cusy', 'io'), ('veit.schiele', 'cusy', 'io'), ('info', 'cusy', 'io')]

Groups can also be used in re.Pattern.sub() [https://docs.python.org/3/library/re.html#re.Pattern.sub] where \1 stands for the
first matching group, \2 for the second and so on:

>>> regex.findall(addresses)
[('veit', 'cusy', 'io'), ('veit.schiele', 'cusy', 'io'), ('info', 'cusy', 'io')]
>>> print(regex.sub(r'Username: \1, Domain: \2, Suffix: \3', addresses))
Veit <Username: veit, Domain: cusy, Suffix: io>
Veit Schiele <Username: veit.schiele, Domain: cusy, Suffix: io>
cusy GmbH <Username: info, Domain: cusy, Suffix: io>

The following table contains a brief overview of methods for regular
expressions:

	Method

	Description

	re.findall() [https://docs.python.org/3/library/re.html#re.findall]

	returns all non-overlapping matching patterns in a string as a list.

	re.finditer() [https://docs.python.org/3/library/re.html#re.finditer]

	like findall, but returns an iterator.

	re.match() [https://docs.python.org/3/library/re.html#re.match]

	matches the pattern at the beginning of the string and optionally segments
the pattern components into groups; if the pattern matches, a match
object is returned, otherwise none.

	re.search() [https://docs.python.org/3/library/re.html#re.search]

	searches the string for matches to the pattern; in this case, returns a
match object; unlike match, the match can be anywhere in the string
and not just at the beginning.

	re.split() [https://docs.python.org/3/library/re.html#re.split]

	splits the string into parts each time the pattern occurs.

	re.sub() [https://docs.python.org/3/library/re.html#re.sub],
re.subn() [https://docs.python.org/3/library/re.html#re.subn]

	replaces all (sub) or the first n occurrences (subn) of the
pattern in the string with a replacement expression; uses the symbols \1,
\2, … to refer to the elements of the match group.

See also

	Regular expressions

	Regular Expression HOWTO [https://docs.python.org/3/howto/regex.html]

	re — Regular expression operations [https://docs.python.org/3/library/re.html]

print()

The function print() [https://docs.python.org/3/library/functions.html#print] outputs character strings, whereby other Python data
types can easily be converted into strings and formatted, for example:

>>> import math
>>> pi = math.pi
>>> d = 28
>>> u = pi * d
>>> print("Pi is", pi, "and the circumference with a diameter of", d, "inches is", u, "inches.")
Pi is 3.141592653589793 and the circumference with a diameter of 28 inches is 87.96459430051421 inches.

F-Strings

F-strings can be used to shorten numbers that are too detailed for a text:

>>> print(f"The value of Pi is {pi:.3f}.")
The value of Pi is 3.142.

In {pi:.3f}, the format specification f is used to truncate the number
Pi to three decimal places.

In A/B test scenarios, you often want to display the percentage change in a key
figure. F strings can be used to formulate them in an understandable way:

>>> metrics = 0.814172
>>> print(f"The AUC has increased to {metrics:=+7.2%}")
The AUC has increased to +81.42%

In this example, the variable metrics is formatted with = taking over
the contents of the variable after the +, displaying a total of seven
characters including the plus or minus sign, metrics and the percent sign.
.2 provides two decimal places, while the % symbol converts the decimal
value into a percentage. For example, 0.514172 is converted to +51.42%.

Values can also be converted into binary and hexadecimal values:

>>> block_size = 192
>>> print(f"Binary block size: {block_size:b}")
Binary block size: 11000000
>>> print(f"Hex block size: {block_size:x}")
Hex block size: c0

There are also formatting specifications that are ideally suited for CLI output, for example:

>>> data_types = [(7, "Data types", 19), (7.1, "Numbers", 19), (7.2, "Lists", 23)]
>>> for n, title, page in data_types:
... print(f"{n:.1f} {title:.<25} {page: >3}") ...
7.0 Data types............... 19
7.1 Numbers.................. 19
7.2 Lists.................... 23

In general, the format is as follows, whereby all information in square brackets
is optional:

:[[FILL]ALIGN][SIGN][0b|0o|0x|d|n][0][WIDTH][GROUPING]["." PRECISION][TYPE]

The following table lists the fields for character string formatting and their
meaning:

	Field

	Meaning

	FILL

	Character used to fill in ALIGN. The default
value is a space.

	ALIGN

	Text alignment and fill character:

<: left-aligned

>: right-aligned

^: centred

=: Fill character after SIGN

	SIGN

	Display sign:

+: Display sign for positive and negative
numbers

-: Default value, - only for negative
numbers or space for positive

	0b|0o|0x|d|n

	Sign for integers:

0b: Binary numbers

0o: Octal numbers

0x: Hexadecimal numbers

d: Default value, decimal integer with base 10

n: uses the current locale setting to
insert the corresponding number separators

	0

	fills with zeros

	WIDTH

	Minimum field width

	GROUPING

	Number separator: [1]

,: comma as thousands separator

_: underscore for thousands separator

	.PRECISION

	
For floating point numbers, the number of digits
after the point

For non-numeric values, the maximum length

	TYPE

	Output format as number type or string

… for integers:

b: binary format

c: converts the integer to the corresponding
Unicode character

d: default value, decimal character

n: same as d, th the difference that it
uses the current locale setting to insert the
corresponding number separators

o: octal format

x: Hexadecimal format in base 16, using
lowercase letters for the digits above 9

X: Hexadecimal format based on 16, using
capital letters for digits above 9

… for floating point numbers:

e: Exponent with e as separator between
coefficient and exponent

E: Exponent with E as separator between
coefficient and exponent

g: Standard value for floating point numbers,
whereby the exponent has a fixed width for large
and small numbers

G: Like g, but changes to E if the
number becomes too large. The representations
of infinity and NaN are also written in capital
letters

n: Like g with the difference that it uses
the current locale setting to insert the
corresponding number separators

%: Percentage. Multiplies the number by 100
and displays it in the fixed format f followed
by a percent sign

[1]
The format identifier n formats a number in a locally customised way,
for example:

>>> value = 635372
>>> import locale
>>> locale.setlocale(locale.LC_NUMERIC, "en_US.utf-8")
'en_US.utf-8'
>>> print(f"{value:n}")
635,372

Tip

A good source for F-strings is the help function:

>>> help()
help> FORMATTING
...

You can browse through the help here and find many examples.

You can exit the help function again with :–q and ⏎.

See also

	PyFormat [https://pyformat.info]

	f-strings [https://docs.python.org/3/reference/lexical_analysis.html#f-strings]

	PEP 498 [https://peps.python.org/pep-0498/]

Debugging F-Strings

In Python 3.8, a specifier was introduced to help with debugging F-string
variables. By adding an equals sign =, the code is included within the
F-string:

>>> uid = "veit"
>>> print(f"My name is {uid.capitalize()=}")
My name is uid.capitalize()='Veit'

Formatting date and time formats and IP addresses

datetime [https://docs.python.org/3/library/datetime.html#module-datetime] supports the formatting of strings using the same syntax as
the strftime [https://docs.python.org/3/library/datetime.html#datetime.datetime.strftime] method for these objects.

>>> import datetime
>>> today = datetime.date.today()
>>> print(f"Today is {today:%d %B %Y}.")
Today is 26 November 2023.

The ipaddress [https://docs.python.org/3/library/ipaddress.html#module-ipaddress] module of Python also supports the formatting of
IPv4Address and IPv6Address objects.

Finally, third-party libraries can also add their own support for formatting
strings by adding a __format__ method to their objects.

See also

	strftime() and strptime() Format Codes [https://docs.python.org/3/library/datetime.html#format-codes]

	Python strftime cheatsheet [https://strftime.org]

Built-in modules for strings

The Python standard library contains a number of built-in modules that you can
use to manage strings:

	Module

	Description

	string [https://docs.python.org/3/library/string.html#module-string]

	compares with constants such as string.digits [https://docs.python.org/3/library/string.html#string.digits] or
string.whitespace [https://docs.python.org/3/library/string.html#string.whitespace]

	re [https://docs.python.org/3/library/re.html#module-re]

	searches and replaces text with regular expressions

	struct [https://docs.python.org/3/library/struct.html#module-struct]

	interprets bytes as packed binary data

	difflib [https://docs.python.org/3/library/difflib.html#module-difflib]

	helps to calculate deltas, find differences between strings or sequences and
create patches and diff files

	textwrap [https://docs.python.org/3/library/textwrap.html#module-textwrap]

	wraps and fills text, formats text with line breaks or spaces

See also

	Manipulation of strings with pandas [https://www.python4data.science/en/latest/workspace/pandas/string-manipulation.html]

 Files

Files

Opening files

In Python, you open and read a file using the built-in open() [https://docs.python.org/3/library/functions.html#open]
function and various built-in read operations. The following short Python
program reads a line from a text file called myfile.txt:

>>> f = open("docs/types/myfile.txt", "r")
>>> line = f.readline()

open() [https://docs.python.org/3/library/functions.html#open] does not read anything from the file, but returns a
so-called file object that you can use to access the open file. It keeps track
of a file and how much of the file has been read or written. All file input in
Python is done with file objects, not file names.

The first call to readline [https://docs.python.org/3/library/readline.html#module-readline] returns the first line of the file
object, which is everything up to and including the first line break, or the
entire file if there is no line break in the file; the next call to readline
returns the second line if it exists, and so on.

The first argument of the open function is a pathname. In the previous
example, you open a file that you assume is in the current working directory.
The following example opens a file in an absolute location – C:\My
Documents\myfile:

>>> import os
>>> pathname = os.path.join("C:/", "Users", "Veit", "Documents", "myfile.txt")
>>> with open(pathname, "r") as f:
... line = f.readline()

Note

This example uses the with keyword, which means that the file is opened
with a context manager, which is explained in more detail in
Context management with with. This way of opening files manages possible I/O
errors better and should generally be preferred.

Closing files

After all data has been read from or written to a file object, the file object
should be closed again to free up system resources, allow other code to read or
write to the underlying file, and make the program more reliable overall. For
small scripts, this usually does not have a large impact because file objects
are automatically closed when the script or program exits. However, for larger
programs, too many open file objects can exhaust system resources, causing the
program to terminate. You close a file object with the close method when the
file object is no longer needed:

>>> f = open("docs/types/myfile.txt", "r")
>>> line = f.readline()
>>> f.close()

However, using a Context management with with usually remains the better option to
automatically close files when you are done:

>>> with open("docs/types/myfile.txt", "r") as f:
... line = f.readline()

Opening files in write or other modes

The second argument of the open() [https://docs.python.org/3/library/functions.html#open] function is a string that
specifies how the file should be opened. "r" opens the file for reading,
"w" opens the file for writing, and "a" opens the file for attaching. If
you want to open the file for reading, you can omit the second argument, because
"r" is the default value. The following short program writes Hi,
Pythonistas! to a file:

>>> f = open("docs/types/myfile.txt", "w")
>>> f.write("Hi, Pythonistas!\n")
17
>>> f.close()

Depending on the operating system, open() [https://docs.python.org/3/library/functions.html#open] may also have access to
other file modes. However, these modes are not necessary for most purposes.

open can take an optional third argument that defines how read or write
operations for this file are buffered. Buffering keeps data in memory until
enough data has been requested or written to justify the time required for a
disk access. Other parameters for open control the encoding for text files
and the handling of line breaks in text files. Again, you don’t usually need to
worry about these functions, but as you become more advanced with Python you may
want to read up on them.

Read and write functions

I have already introduced the most common function for reading text files,
readline [https://docs.python.org/3/library/readline.html#module-readline]. This function reads a single line from a file object
and returns it, including all line breaks at the end of the line. If there is
nothing more to read, readline returns an empty string, which makes it easy to
determine, for example, the number of lines in a file:

>>> f = open("docs/types/myfile.txt", "r")
>>> lc = 0
>>> while f.readline() != "":
... lc = lc + 1
...
>>> print(lc)
1
>>> f.close()

A shorter way to count all lines is with the readlines method, which is also
built in, that reads all lines of a file and returns them as a list of strings
with one string per line:

>>> f = open("docs/types/myfile.txt", "r")
>>> print(len(f.readlines()))
1
>>> f.close()

If you count all the lines in a large file, this method may cause the memory to
fill up because the entire file is read at once. It is also possible that memory
overflows with readline [https://docs.python.org/3/library/readline.html#module-readline] if you try to read a line from a large
file that does not contain newline characters. To better deal with such
situations, both methods have an optional argument that affects the amount of
data read at a time. Another way to iterate over all the lines in a file is to
treat the file object as an iterator in a for loop:

>>> f = open("docs/types/myfile.txt", "r")
>>> lc = 0
>>> for l in f:
... lc = lc + 1
...
>>> print(lc)
1
>>> f.close()

This method has the advantage that the lines are read into the memory as needed, so that even with large files there is no need to fear a lack of memory. The other advantage of this method is that it is simpler and more readable.

However, a possible problem with the read method can arise when conversions are
done in text mode on Windows and macOS if you use the open() [https://docs.python.org/3/library/functions.html#open] command in
text mode, that is without appending a b. In text mode on macOS, each \r
is converted to \n, while on Windows, \r\n pairs are converted to
\n. You can specify how line breaks are handled by using the newline
parameter when opening the file and specifying newline="\n", \r or
\r\n, which will cause only that string to be used as a line break:

>>> f = open("docs/types/myfile.txt", "r", newline="\n")

In this example, only \n is considered a line break. However, if the file
was opened in binary mode, the newline parameter is not necessary, as all
bytes are returned exactly as they are in the file.

The write methods corresponding to readline and readlines are write
and writelines. Note that there is no writeline function. write
writes a single string that can span multiple lines if newline characters are
embedded in the string, as in the following example:

f.write("Hi, Pythinistas!\n\n")

The writelines method is confusing, however, because it does not necessarily
write multiple lines; it takes a list of strings as an argument and writes them
sequentially to the specified file object without inserting line breaks between
the list items; only if the strings in the list contain line breaks are line
breaks added to the file object; otherwise they are concatenated. writelines
is thus the exact inverse of readlines, since it can be applied to the list
returned by readlines to write a file identical to the source file. Assuming
that myfile.txt exists and is a text file, the following example creates an
exact copy of myfile.txt named myfile2.txt:

>>> input_file = open("myfile.txt", "r")
>>> lines = input_file.readlines()
>>> input_file.close()
>>> output_file = open("myfile2.txt", "w")
>>> output_file.writelines(lines)
>>> output_file.close()

Using binary mode

If you want to read all the data in a file (partially) into a single byte object
and transfer it to memory to be treated as a byte sequence, you can use the
read method. Without an argument, it reads the entire file from the current
position and returns the data as a byte object. With an integer argument, it
reads a maximum of this number of bytes and returns a bytes object of the
specified size:

1>>> f = open("myfile.txt", "rb")
2>>> head = f.read(16)
3>>> print(head)
4b'Hi, Pythonistas!'
5>>> body = f.read()
6>>> print(body)
7b'\n\n'
8>>> f.close()

	Line 1
	opens a file for reading in binary mode

	Line 2
	reads the first 16 bytes as head string

	Line 3
	outputs the head string

	Line 5
	reads the rest of the file

Note

Files opened in binary mode work only with bytes and not with strings. To use
the data as strings, you must decode all byte objects into string objects.
This point is often important when dealing with network protocols, where data
streams often behave like files, but must be interpreted as bytes and not
strings.

Built-in modules for files

The Python standard library contains a number of built-in modules that you can
use to manage files:

	Module

	Description

	os.path [https://docs.python.org/3/library/os.path.html#module-os.path]

	performs common pathname manipulations

	pathlib [https://docs.python.org/3/library/pathlib.html#module-pathlib]

	manipulates pathnames

	fileinput [https://docs.python.org/3/library/fileinput.html#module-fileinput]

	iterates over multiple input files

	filecmp [https://docs.python.org/3/library/filecmp.html#module-filecmp]

	compares files and directories

	tempfile [https://docs.python.org/3/library/tempfile.html#module-tempfile]

	creates temporary files and directories

	glob [https://docs.python.org/3/library/glob.html#module-glob],
fnmatch [https://docs.python.org/3/library/fnmatch.html#module-fnmatch]

	use UNIX-like path and file name patterns

	linecache [https://docs.python.org/3/library/linecache.html#module-linecache]

	randomly accesses lines of text

	shutil [https://docs.python.org/3/library/shutil.html#module-shutil]

	performs higher level file operations

	mimetypes [https://docs.python.org/3/library/mimetypes.html#module-mimetypes]

	Assignment of file names to MIME types

	pickle [https://docs.python.org/3/library/pickle.html#module-pickle],
shelve [https://docs.python.org/3/library/shelve.html#module-shelve]

	enable Python object serialisation and persistence, see also
The pickle module

	csv [https://docs.python.org/3/library/csv.html#module-csv]

	reads and writes CSV files

	json [https://docs.python.org/3/library/json.html#module-json]

	JSON encoder and decoder

	sqlite3 [https://docs.python.org/3/library/sqlite3.html#module-sqlite3]

	provides a DB-API 2.0 interface for SQLite databases, see also
The sqlite module

	xml [https://docs.python.org/3/library/xml.html#module-xml],
xml.parsers.expat [https://docs.python.org/3/library/pyexpat.html#module-xml.parsers.expat],
xml.dom [https://docs.python.org/3/library/xml.dom.html#module-xml.dom],
xml.sax [https://docs.python.org/3/library/xml.sax.html#module-xml.sax],
xml.etree.ElementTree [https://docs.python.org/3/library/xml.etree.elementtree.html#module-xml.etree.ElementTree]

	reads and writes XML files, see also R:doc:../save-data/xml

	html.parser [https://docs.python.org/3/library/html.parser.html#module-html.parser],
html.entities [https://docs.python.org/3/library/html.entities.html#module-html.entities]

	Parsing HTML and XHTML

	configparser [https://docs.python.org/3/library/configparser.html#module-configparser]

	reads and writes Windows-like configuration files (.ini)

	base64 [https://docs.python.org/3/library/base64.html#module-base64],
binhex,
binascii [https://docs.python.org/3/library/binascii.html#module-binascii],
quopri [https://docs.python.org/3/library/quopri.html#module-quopri],
uu [https://docs.python.org/3/library/uu.html#module-uu]

	encodes/decodes files or streams

	struct [https://docs.python.org/3/library/struct.html#module-struct]

	reads and writes structured data to and from files

	zlib [https://docs.python.org/3/library/zlib.html#module-zlib],
gzip [https://docs.python.org/3/library/gzip.html#module-gzip],
bz2 [https://docs.python.org/3/library/bz2.html#module-bz2],
zipfile [https://docs.python.org/3/library/zipfile.html#module-zipfile],
tarfile [https://docs.python.org/3/library/tarfile.html#module-tarfile]

	for working with archive files and compressions

See also

	pandas IO tools [https://www.python4data.science/en/latest/data-processing/pandas-io.html]

	Examples of serialisation formats CSV [https://www.python4data.science/en/latest/data-processing/serialisation-formats/csv/example.html],
JSON [https://www.python4data.science/en/latest/data-processing/serialisation-formats/json/example.html],
Excel [https://www.python4data.science/en/latest/data-processing/serialisation-formats/excel.html],
XML/HTML [https://www.python4data.science/en/latest/data-processing/serialisation-formats/xml-html/index.html],
YAML [https://www.python4data.science/en/latest/data-processing/serialisation-formats/yaml/example.html],
TOML [https://www.python4data.science/en/latest/data-processing/serialisation-formats/toml/example.html]
und Pickle [https://www.python4data.science/en/latest/data-processing/serialisation-formats/pickle/pickle-examples.html].

 None

None

In addition to the standard types such as Strings and Numbers,
Python has a special data type that defines a single special data object called
None. As the name suggests, None is used to represent an empty value. It
appears in various forms in Python.

None is often useful in everyday Python programming as a placeholder to
indicate a data structure where meaningful data can eventually be found, even if
that data has not yet been calculated.

The presence of None is easy to check, as there is only one instance of
None in Python (all references to None point to the same object), and
None is only identical to itself:

>>> MyType = type(None)
>>> MyType() is None
True

None is falsy

In Python, we often rely on the fact that None is falsy:

>>> bool(None)
False

For example, we can check whether Strings are empty in an
if statement:

>>> myval = ""
>>> if not myval:
... print("No value was specified.")
...
No value was specified.

None stands for emptiness

>>> titles = {7.0: "Data Types", 7.1: "Lists", 7.2: "Tuples"}
>>> third_title = titles.get("7.3")
>>> print(third_title)
None

The default return value of a function is None

For example, a procedure in Python is just a function that does not explicitly
return a value, which means that it returns None by default:

>>> def myfunc():
... pass
...
>>> print(myfunc())
None

 Input

Input

You can use the input() [https://docs.python.org/3/library/functions.html#input] function to get data input. Use the prompt
string you want to display as a parameter for input:

>>> first_name = input("First name? ")
First name? Veit
>>> surname = input("Surname? ")
Surname? Schiele
>>> print(first_name, surname)
Veit Schiele

This is a fairly simple way to get data input. The only catch is that the input
comes in as a string. So if you want to use a number, you have to convert it
with the int [https://docs.python.org/3/library/functions.html#int] or float [https://docs.python.org/3/library/functions.html#float] function, for example, for calculating the age from the year of birth:

>>> import datetime
>>>
>>> currentDateTime = datetime.datetime.now()
>>> year = currentDateTime.year
>>> year_birth = input("Year of birth? ")
Year of birth? 1964
>>> age = year - int(year_birth)
>>> print('Age:', age, 'years')
Age: 58 years

 Control flows

Control flows

Python has a whole range of structures for controlling code execution and
programme flow, including common branches and loops.

 Boolean values and expressions

Boolean values and expressions

In Python, there are several ways to express Boolean values; the Boolean
constant False, 0, the Python value None, and empty values (for
example, the empty list [] or the empty string "") are all considered
False. The Boolean constant True and everything else is considered
True.

	<, <=, ==, >, >=
	compares values.

	is, is not, in, not in
	checks the identity.

	and, not, or
	are logical operators that can be used to link the above checks.

>>> x = 3
>>> y = 3.0
>>> z = [3, 4, 5]
>>> x == y
True
>>> x is y
False
>>> x is not y
True
>>> x in z
True
>>> id(x)
4375911432
>>> id(y)
4367574480
>>> id(z[0])
4375911432

If x and z[0] have the same ID in memory, this means that we are
referring to the same object in two places.

Most frequently, is and is not are used in conjunction with
None:

>>> x is None
False
>>> x is not None
True

The Python style guide in PEP 8 [https://peps.python.org/pep-0008/] says that you should use identity to compare
with None. So you should never use x == None, but enter x
is None instead.

However, you should never compare calculated floating point numbers with each
other:

>>> u = 0.6 * 7
>>> v = 0.7 * 6
>>> u == v
False
>>> u
4.2
>>> v
4.199999999999999

 if-elif-else statement

if-elif-else statement

The code block after the first true condition of an if or elif statement
is executed. If none of the conditions are true, the code block after the
else is executed:

 1>>> x = 1
 2>>> if x < 1:
 3... x = 2
 4... y = 3
 5... elif x > 1:
 6... x = 4
 7... y = 5
 8... else:
 9... x = 6
10... y = 7
11...
12>>> print(x, y)
136 7

	Lines 5 and 8
	The elif and else clauses are optional, and there can be any number
of elif clauses.

	Lines 3, 4, 6, 7, 9 and 10
	Python uses indentations to delimit blocks. No explicit delimiters such as
brackets or curly braces are required. Each block consists of one or more
statements separated by line breaks. All these statements must be on the
same indentation level.

 Loops

Loops

while loop

The while loop is executed as long as the condition (here: x > y) is
true:

1>>> x, y = 6, 3
2>>> while x > y:
3... x -= 1
4... if x == 4:
5... break
6... print(x)
7...
85

	Line 1
	This is a shorthand notation where x is given the value 6 and y
is given the value 3.

	Lines 2–10
	This is the while loop with the statement x > y, which is true as
long as x is greater than y.

	Line 3
	x is reduced by 1.

	Line 4
	if condition where x is to be exactly 4.

	Line 5
	break ends the loop.

	Lines 8 and 9
	outputs the results of the while loop before execution was interrupted
with break.

1>>> x, y = 6, 3
2>>> while x > y:
3... x -= 1
4... if x == 4:
5... continue
6... print(x)
7...
85
93

	Line 5
	continue terminates the current iteration of the loop.

for loop

The for loop is simple but powerful because it can iterate over any iterable
type, such as a list or a tuple. Unlike many other languages, the for loop
in Python iterates over every element in a sequence for example a list or a tuple), which makes it more like
a foreach loop. The following loop uses the Modulo [https://en.wikipedia.org/wiki/Modulo_operation] operator % as a condition
for the first occurrence of an integer divisible by 5:

 1>>> items = [1, "fünf", 5.0, 10, 11, 15]
 2>>> d = 5
 3>>> for i in items:
 4... if not isinstance(i, int):
 5... continue
 6... if not i % d:
 7... print(f"First integer found that is divisible by {d}: {i}")
 8... break
 9...
10First integer found that is divisible by 5: 10

x is assigned each value in the list in turn. If x is not an integer,
the remainder of this iteration is aborted by the continue statement. The
flow control is continued with x being set to the next entry in the list.
After the first matching integer is found, the loop is terminated with the
break statement.

Loops with an index

You can also output the index in a for loop, for example with
enumerate() [https://docs.python.org/3/library/functions.html#enumerate]:

>>> data_types = ["Data types", "Numbers", "Lists"]
>>> for index, title in enumerate(data_types):
... print(index, title)
...
0 Data types
1 Numbers
2 Lists

List Comprehensions

A list is usually generated as follows:

>>> squares = []
>>> for i in range(8):
... squares.append(i ** 2)
...
>>> squares
[0, 1, 4, 9, 16, 25, 36, 49]

Instead of creating an empty list and inserting each element at the end, with
list comprehensions you simply define the list and its content at the same time
with just a single line of code:

>>> squares = [i ** 2 for i in range(8)]
>>> squares
[0, 1, 4, 9, 16, 25, 36, 49]

The general format for this is:

NEW_LIST = [EXPRESSION for MEMBER in ITERABLE]

Each list comprehension in Python contains three elements:

	EXPRESSION
	is a call to a method or another valid expression that returns a value. In
the example above, the expression i ** 2 is the square of the
respective member value.

	MEMBER
	is the object or the value in an ITERABLE. In the example above,
the value is i.

	ITERABLE
	is a list, a set, a generator
or another object that can return its elements individually. In the example
above, the iterable is range(8).

You can also use optional conditions with list comprehensions, which are usually
appended to the end of the expression:

>>> squares = [i ** 2 for i in range(8) if i >= 4]
>>> squares
[16, 25, 36, 49]

 Exceptions

Exceptions

This section is about exceptions, that is, language functions that specifically
handle unusual circumstances during the execution of a programme. The most
common exception is to handle errors, but they can also be used effectively for
many other purposes. Python provides a comprehensive set of exceptions, and you can define new exceptions for your own purposes.

The entire exception mechanism in Python is object-oriented: An exception is an
object that is automatically created by Python functions with a raise
statement. This raise statement causes the Python programme to be executed
in a different way than usually intended: The current call chain is searched for
a handler that can handle the generated exception. If such a handler is found,
it is called and can access the exception object to obtain further information.
If no suitable exception handler is found, the programme terminates with an
error message.

It is possible to create different types of exceptions to reflect the actual
cause of the reported error or unusual circumstance. For an overview of the
class hierarchy of built-in exceptions, see Exception hierarchy [https://docs.python.org/3/library/exceptions.html#exception-hierarchy] in the
Python documentation. Each exception type is a Python class that inherits from
its parent exception type. For example, a ZeroDivisionError is also an
ArithmeticError, an Exception and also a BaseException by
inheritance. This hierarchy is intentional: most exceptions inherit from
Exception, and it is strongly recommended that all user-defined exceptions
also subclass Exception, and not BaseException:

class EmptyFileError(Exception):
 pass

This defines your own exception type, which inherits from the Exception base
type.

filenames = ["myFile1.py", "nonExistent.py", "emptyFile.py", "myFile2.py"]

A list of different file types is defined.

Finally, exceptions or errors are caught and handled using the compound
statement try-except-else-finally. Any exception that is not
caught will cause the programme to terminate.

 7 try:
 8 f = open(file, "r")
 9 line = f.readline()
10 if line == "":
11 f.close()
12 raise EmptyFileError(f"{file} is empty")
13 except IOError as error:
14 print(f"Cannot open file {file}: {error.strerror}")
15 except EmptyFileError as error:
16 print(error)
17 else:
18 print(f"{file}: {f.readline()}")
19 finally:
20 print("File", file, "processed")

	Line 7
	If an IOError or EmptyFileError occurs during the execution of the
instructions in the try block, the corresponding except block is
executed.

	Line 9
	An IOError could be triggered here.

	Line 12
	Here you trigger the EmptyFileError.

	Line 17
	The else clause is optional; it is executed if no exception occurs in
the try block.

Note

In this example, continue statements could have been used in the
except blocks instead.

	Line 19
	The finally clause is optional; it is executed at the end of the block,
regardless of whether an exception was thrown or not.

 Context management with with

Context management with with

A more rational way to encapsulate the try-except-finally pattern is to use
the keyword with and a context manager. Python defines context managers for
things like file access and custom context managers. One
advantage of context managers is that they can define default clean-up actions
that are always executed, whether an exception occurs or not.

The following listing shows opening and reading a file using with and a
context manager.

1filename = "myFile1.py"
2with open(filename, "r") as f:
3 for line in f:
4 print(f)

A context manager is set up here that encloses the open function and the
block that follows it. The predefined clean-up action of the context manager
closes the file even if an exception occurs. As long as the expression in the
first line is executed without throwing an exception, the file is always closed.
This code is equivalent to this code:

1filename = "myfile1.py"
2try:
3 f = open(filename, "r")
4 for line in f:
5 print(f)
6except Exception as e:
7 raise e
8finally:
9 f.close()

 Functions

Functions

Basic function definitions

The basic syntax for a Python function definition is

def function_name(param1, param2, ...):
 body

As with control streams, Python uses indentation
to separate the function from the function definition. The following simple
example inserts the code into a function so that you can call it to get the
factorial [https://en.wikipedia.org/wiki/Factorial] of a number:

1 >>> def fact(n):
2 ... """Return the factorial of the given number."""
3 ... f = 1
4 ... while n > 0:
5 ... f = f * n
6 ... n = n - 1
7 ... return f

	Line 2
	This is an optional documentation string, or docstring. You can get its
value by calling fact.__doc__. The purpose of docstrings is to describe
the behaviour of a function and the parameters it takes, while comments are
to document internal information about how the code works. Docstrings are
Strings that immediately follow the first line of a function
definition and are usually enclosed in triple quotes to allow for multi-line
descriptions. For multi-line documentation strings, it is common to give a
summary of the function on the first line, follow this summary with an empty
line and end with the rest of the information.

See also

	sphinx.ext.napoleon

	Line 7
	The value is returned after the function is called. You can also write
functions that have no return statement and return None, and
when return arg is executed, the value arg is returned.

Although all Python functions return values, it is up to you how the return
value of a function is used:

1 >>> fact(3)
2 6
3 >>> x = fact(3)
4 >>> x
5 6

	Line 1
	The return value is not linked to a variable.

	Line 2
	The value of the fact function is only output in the interpreter.

	Line 3
	The return value is linked to the variable x.

Parameters

Python offers flexible mechanisms for passing arguments to functions:

 1>>> x, y = 2, 3
 2>>> def func1(u, v, w):
 3... value = u + 2*v + w**2
 4... if value > 0:
 5... return u + 2*v + w**2
 6... else:
 7... return 0
 8...
 9>>> func1(x, y, 2)
1012
11>>> func1(x, w=y, v=2)
1215
13>>> def func2(u, v=1, w=1):
14... return u + 4 * v + w ** 2
15...
16>>> func2(5, w=6)
1745
18>>> def func3(u, v=1, w=1, *tup):
19... print((u, v, w) + tup)
20...
21>>> func3(7)
22(7, 1, 1)
23>>> func3(1,2,3,4,5)
24(1, 2, 3, 4, 5)
25>>> def func4(u, v=1, w=1, **kwargs):
26... print(u, v, w, kwargs)
27...
28>>> func4(1, 2, s=4, t=5, w=3)
291 2 3 {'s': 4, 't': 5}

	Line 2
	Functions are defined with the def statement.

	Line 5
	The return statement is used by a function to return a value. This value
can be of any type. If no return statement is found, the value None
is returned by Python.

	Line 11
	Function arguments can be entered either by position or by name (keyword).
z and y are specified by name in our example.

	Line 13
	Function parameters can be defined with default values that will be used if
a function call omits them.

	Line 18
	A special parameter can be defined that combines all additional positional
arguments in a function call into one tuple.

	Zeile 25
	Similarly, a special parameter can be defined that summarises all additional
keyword arguments in a function call in a dictionary.

 Parameters

Parameters

Options for function parameters

Most functions need parameters. Python offers three options for defining
function parameters.

Positional parameters

The simplest way to pass parameters to a function in Python is to pass them at
the position. On the first line of the function, you specify the variable name
for each parameter; when the function is called, the parameters used in the
calling code are assigned to the function’s parameter variables based on their
order. The following function calculates x as a power of y:

>>> def power(x, y):
... p = 1
... while y > 0:
... p = p * x
... y = y - 1
... return p
...
>>> power(2, 5)
32

This method requires that the number of parameters used by the calling code
exactly matches the number of parameters in the function definition; otherwise,
a type error exception is thrown:

>>> power(2)
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
TypeError: power() missing 1 required positional argument: 'y'

Function parameters can have default values, which you can declare by assigning
a default value in the first line of the function definition, like this:

def function_name(param1, param2=Standardwert2, param3=Standardwert3, ...)

Any number of parameters can be given default values, but parameters with
default values must be defined as the last in the parameter list.

The following function also calculates x as a power of y. However, if
y is not specified in a function call, the default value 5 is used:

>>> def power(x, y=5):
... p = 1
... while y > 0:
... p = p * x
... y = y - 1
... return p

You can see the effect of the standard argument in the following example:

>>> power(3, 6)
729
>>> power(3)
243

Parameter names

You can also pass arguments to a function by using the name of the corresponding
function parameter rather than its position. Similar to the previous example,
you can enter the following:

>>> power(y=6, x=2)
64

Since the arguments for the power are named x and y in the last call,
their order is irrelevant; the arguments are linked to the parameters of the
same name in the definition of the power, and you get back 2^6. This type of
argument passing is called keyword passing. Keyword passing can be very useful
in combination with the default arguments of Python functions when you define
functions with a large number of possible arguments, most of which have common
default values.

Variable number of arguments

Python functions can also be defined to handle a variable number of arguments.
This is possible in two ways. One method collects an unknown number of arguments
in a list. The other method can collect an arbitrary
number of arguments passed with a keyword that has no correspondingly named
parameter in the function parameter list in a dict.

For an indeterminate number of positional arguments, prefixing the function’s
final parameter name with a * causes all excess non-keyword arguments in a
function call, that is, the positional arguments that are not assigned to any
other parameter, to be collected and assigned as a tuple to the specified
parameter. This is, for example, a simple way to implement a function that finds
the mean in a list of numbers:

>>> def mean(*numbers):
... if len(numbers) == 0:
... return None
... else:
... m = sum(numbers) / len(numbers)
... return m

Now you can test the behaviour of the function, for example with:

>>> mean(3, 5, 2, 4, 6)
4.0

Any number of keyword arguments can also be processed if the last parameter in
the parameter list is prefixed with **. Then all arguments passed with a
keyword are collected in a dict. The key for each entry in
the dict is the keyword (parameter name) for the argument. The value of this
entry is the argument itself. An argument passed by keyword is superfluous in
this context if the keyword with which it was passed does not match one of the
parameter names in the function definition, for example:

>>> def server(ip, port, **other):
... print("ip: {0}, port: {1}, keys in 'other': {2}".format(ip,
... port, list(other.keys())))
... total = 0
... for k in other.keys():
... total = total + other[k]
... print("The sum of the other values is {0}".format(total))

Trying out this function shows that it can add the arguments passed under the
keywords foo, bar and baz, even though foo, bar and baz
are not parameter names in the function definition:

>>> server("127.0.0.1", port = "8080", foo = 3, bar = 5, baz = 2)
ip: 127.0.0.1, port: 8080, keys in 'other': ['foo', 'bar', 'baz']
The sum of the other values is 10

Mixing argument passing techniques

It is possible to use all the argument passing techniques of Python functions at
the same time, although this can be confusing if you don’t do it carefully.
Positional arguments should come first, then named arguments, followed by
indefinite positional arguments with a simple *, and finally indefinite
keyword arguments with **.

Mutable objects as arguments

Arguments are passed by object reference. The parameter becomes a new reference
to the object. With immutable objects such as Tuples,
Strings and Numbers, what is done with a parameter
has no effect outside the function. However, if you pass a mutable object, such
as a Lists, a Dictionaries or a class instance, any change
to the object changes what the argument refers to outside the function.
Reassigning the parameter has no effect on the argument.

>>> def my_func(n, l):
... l.append(1)
... n = n + 1
...
>>> x = 5
>>> y = [2, 4, 6]
>>> my_func(x, y)
>>> x, y
(5, [2, 4, 6, 1])

The variable x is not changed because it is unchangeable. Instead, the
function parameter n is set so that it refers to the new value 6.
However, there is a change in y because the list it refers to has been
changed.

 Variables

Variables

Local, non-local and global variables

Here you return to the definition of fact from the beginning of this
Functions chapter:

>>> def fact(n):
... """Return the factorial of the given number."""
... f = 1
... while n > 0:
... f = f * n
... n = n - 1
... return f

Both the variables f and n are local to a particular call to the
function fact; changes made to them during the execution of the function
have no effect on variables outside the function. All variables in the parameter
list of a function and all variables created within a function by an assignment,
such as f = 1, are local to the function.

You can explicitly make a variable a global variable by declaring it with the
global statement before it is used. Global variables can be accessed and
changed by the function. They exist outside the function and can also be
accessed and changed by other functions that declare them as global, or by code
that is not inside a function. Here is an example that illustrates the
difference between local and global variables:

>>> def my_func():
... global x
... x = 1
... y = 2

>>> x = 3
>>> y = 4
>>> my_func()
>>> x
1
>>> y
4

In this example, a function is defined that treats x as a global variable
and y as a local variable, and attempts to change both x and y. The
assignment to x within my_func is an assignment to the global variable
x, which also exists outside my_func. Since x is designated as
global in my_func, the assignment changes this global variable so that it
retains the value 1 instead of the value 3. However, the same is not
true for y; the local variable y inside my_func initially refers to
the same value as the variable y outside my_func, but the assignment
causes y to refer to a new value that is local to the my_func function.

See also

	The global statement [https://docs.python.org/3/reference/simple_stmts.html#global]

While global is used for a top-level variable, nonlocal refers to any
variable in an enclosing area.

See also

	The nonlocal statement [https://docs.python.org/3/reference/simple_stmts.html#nonlocal]

	PEP 3104 [https://peps.python.org/pep-3104/]

 Decorators

Decorators

Functions can also be passed as arguments to other functions and return the
results of other functions. For example, it is possible to write a Python
function that takes another function as a parameter, embeds it in another
function that does something similar, and then returns the new function. This
new combination can then be used instead of the original function:

 1 >>> def inf(func):
 2 ... print("Information about", func.__name__)
 3 ... def details(*args):
 4 ... print("Execute function", func.__name__, "with the argument(s)")
 5 ... return func(*args)
 6 ... return details
 7 ...
 8 >>> def my_func(*params):
 9 ... print(params)
10 ...
11 >>> my_func = inf(my_func)
12 Information about my_func
13 >>> my_func("Hello", "Pythonistas!")
14 Execute function my_func with the argument(s)
15 ('Hello', 'Pythonistas!')

	Line 2
	The inf function outputs the name of the function it wraps.

	Line 6
	When finished, the inf function returns the wrapped function.

A decorator is syntactic sugar [https://en.wikipedia.org/wiki/Syntactic_sugar] for this process and allows
you to wrap one function inside another with a one-line addition. You still get
exactly the same effect as with the previous code, but the resulting code is
much cleaner and easier to read. Using a decorator simply consists of two parts:

	the definition of the function to wrap or decorate other functions, and

	the use of an @ followed by the decorator just before the wrapped
function is defined.

The decorator function should take a function as a parameter and return a
function, as follows:

1 >>> @inf
2 ... def my_func(*params):
3 ... print(params)
4 ...
5 Information about my_func
6 >>> my_func("Hello", "Pythonistas!")
7 Execute function my_func with the argument(s)
8 ('Hello', 'Pythonistas!')

	Line 1
	The function my_func is decorated with @inf.

	Line 7
	The wrapped function is called after the decorator function is finished.

functools

The Python functools [https://docs.python.org/3/library/functools.html#module-functools] module is intended for higher-order functions, for
example functions that act on or return other functions. Mostly you can use them
as decorators, such as:

	functools.cache() [https://docs.python.org/3/library/functools.html#functools.cache]
	Simple, lightweight, function cache as of Python ≥ 3.9, sometimes called
memoize. It returns the same as functools.lru_cache() [https://docs.python.org/3/library/functools.html#functools.lru_cache] with the
parameter maxsize=None, additionally creating a Dictionaries with
the function arguments. Since old values never need to be deleted, this
function is then also smaller and faster. Example:

1>>> from functools import cache
2>>> @cache
3... def factorial(n):
4... return n * factorial(n-1) if n else 1
5...
6>>> factorial(8)
740320
8>>> factorial(10)
93628800

	Line 6
	Since there is no previously stored result, nine recursive calls are
made.

	Line 8
	makes only two new calls, as the other results come from the cache.

	functools.wraps() [https://docs.python.org/3/library/functools.html#functools.wraps]
	This decorator makes the wrapper function look like the original function
with its name and properties.

>>> from functools import wraps
>>> def my_decorator(f):
... @wraps(f)
... def wrapper(*args, **kwargs):
... """Wrapper docstring"""
... print('Call decorated function')
... return f(*args, **kwargs)
... return wrapper
...
>>> @my_decorator
... def example():
... """Example docstring"""
... print('Call example function')
...
>>> example.__name__
'example'
>>> example.__doc__
'Example docstring'

Without @wraps decorator, the name and docstring of the wrapper method
would have been returned instead:

>>> example.__name__
'wrapper'
>>> example.__doc__
'Wrapper docstring'

 Lambda functions

Lambda functions

In Python, a lambda function is an anonymous function, that is, a function that
is declared without a name. It is a small and restricted function that is no
longer than one line. Like a normal function, a lambda function can have several
arguments, but only one expression that is evaluated and returned.

The syntax of a lambda function is

lambda ARGUMENTS: EXPRESSION

>>> add = lambda x, y: x + y
>>> add(2, 3)
5

Note

There is no return statement in the lambda function. The single
expression after the colon is the return value.

In the next example, a lambda function is created within a function call.
However, there is no global variable to store the values of the lambda function:

1>>> count = ['1', '123', '1000']
2>>> max(count)
3'123'
4>>> max(count, key=lambda val: int(val))
5'1000'

In this case, the max() [https://docs.python.org/3/library/functions.html#max] function accepts the key argument, which
defines how the size of each entry is to be determined. Using a lambda function
that converts each string into an integer, max can compare the numerical
values to determine the expected result.

 Modules

Modules

Modules are used in Python to organise larger projects. The Python standard
library is divided into modules to make it more manageable. You don’t have to
organise your own code into modules, but if you write larger programs or code
that you want to reuse, you should do so.

What is a module?

A module is a file that contains code. It defines a group of Python functions or
other objects, and the name of the module is derived from the name of the file.
Modules usually contain Python source code, but can also be compiled C or C++
object files. Compiled modules and Python source modules are used in the same
way.

Modules not only group related Python objects together, but also help to avoid
naming conflicts. You can write a module called mymodule for your programme
that defines a function called my_func. In the same programme, you may also
want to use another module called othermodule, which also defines a
function called my_func, but does something different from your my_func
function. Without modules, it would be impossible to use two different functions
with the same name. With modules, you can refer to the functions
mymodule.my_func and othermodule.my_func in your main programme. Using
the module names ensures that the two my_func functions are not confused, as
Python uses so-called namespaces. A namespace is essentially a dictionary of
names for the functions, classes, modules, etc. available
there.

Modules are also used to make Python itself more manageable. Most of Python’s
standard functions are not integrated into the core of the language, but are
provided via special modules that you can load as needed.

See also

	Python Module Index [https://docs.python.org/3/py-modindex.html]

Creating modules

Probably the best way to learn about modules is to create your own module. To do
this, we create a text file called wc.py, and enter the Python code
below into this text file. If you use IDLE, select File
‣ New Window and start typing.

It is easy to create your own modules that can be imported and used in the same
way as Python’s built-in library modules. The following example is a simple
module with a function that prompts for a file name and determines the number of
words in this file.

 1"""wc module. Contains function: words_occur()"""
 2
 3
 4def words_occur():
 5 """words_occur() - count the occurrences of words in a file."""
 6 # Prompt user for the name of the file to use.
 7 file_name = input("Enter the name of the file: ")
 8 # Open the file, read it and store its words in a list.
 9 f = open(file_name, "r")
10 word_list = f.read().split()
11 f.close()
12 # Count the number of occurrences of each word in the file.
13 occurs_dict = {}
14 for word in word_list:
15 # increment the occurrences count for this word
16 occurs_dict[word] = occurs_dict.get(word, 0) + 1
17 # Print out the results.
18 print(
19 f"File {file_name} has {len(word_list)} words, "
20 f"{len(occurs_dict)} are unique:"
21)
22 print(occurs_dict)
23
24
25if __name__ == "__main__":
26 words_occur()

	Lines 1 and 5
	Docstrings are standard methods for documenting modules,
functions, methods and classes.

	Line 10
	read returns a string containing all the characters in a file, and
split returns a list of the words in a string using spaces.

	Lines 25 to 26
	With this if-statement you can use the programme in two ways:

	for importing in the Python shell or another Python script __name__ is
the filename:

>>> import wc
>>> wc.words_occur()
Enter the name of the file: README.rst
File README.rst has 350 words (187 are unique)
{'Quick': 1, ...}

Alternatively, you can also import words_occur directly:

>>> from wc import words_occur
>>> words_occur()
Enter the name of the file: README.rst
File README.rst has 350 words (187 are unique)
{'Quick': 1, ...}

You can use the interactive mode of the Python shell or IDLE to
incrementally test a module as you create it. However, if you change your
module on disk, entering the import command again will not reload it. For
this purpose, you must use the reload function from the
importlib [https://docs.python.org/3/library/importlib.html] module:

>>> import wc, importlib
>>> importlib.reload(wc)
<module 'wc' from '/home/veit/.local/lib/python3.8/site-packages/wc.py'>

	as a script it is executed with the name __main__ and the function
words_occur()`` is called:

$ python3 wc.py
Enter the name of the file: README.rst
File README.rst has 350 words (187 are unique)
{'Quick': 1, ...}

First save this code in one of the directories of the module search path, which
can be found in the list of sys.path. We recommend .py as the file name
extension, as this identifies the file as Python source code.

Note

The list of directories displayed with sys.path depends on your system
configuration. This list of directories is searched by Python in the order
when an import statement is executed. The first module found that matches the
import request is used. If there is no matching module in this search path,
an ImportError is raised.

If you are using IDLE, you can view the search path and the modules it
contains graphically by using the File ‣ Path Browser
window.

The variable sys.path is initialised with the value of the environment
variable PYTHONPATH, if it exists. When you run a Python script, the
sys.path variable for that script will have the directory where the
script is located as the first element, so you can conveniently find out
where the executing Python programme is located.

Command line arguments

In our example, if you want to pass the file name as a command line argument,
for example

$ python3 wc.py README.rst

you can easily do this with the following modification of our script:

--- /home/docs/checkouts/readthedocs.org/user_builds/python-basics-tutorial/checkouts/24.1.0/docs/modules/wc.py
+++ /home/docs/checkouts/readthedocs.org/user_builds/python-basics-tutorial/checkouts/24.1.0/docs/modules/wcargv.py
@@ -1,10 +1,12 @@
 """wc module. Contains function: words_occur()"""
+
+import sys

 def words_occur():
 """words_occur() - count the occurrences of words in a file."""
 # Prompt user for the name of the file to use.
- file_name = input("Enter the name of the file: ")
+ file_name = sys.argv.pop()
 # Open the file, read it and store its words in a list.
 f = open(file_name, "r")
 word_list = f.read().split()
@@ -16,8 +18,8 @@
 occurs_dict[word] = occurs_dict.get(word, 0) + 1
 # Print out the results.
 print(
- f"File {file_name} has {len(word_list)} words, "
- f"{len(occurs_dict)} are unique:"
+ "File %s has %d words (%d are unique)"
+ % (file_name, len(word_list), len(occurs_dict))
)
 print(occurs_dict)

	sys.argv [https://docs.python.org/3/library/sys.html#sys.argv]
	returns a list of command line arguments passed to a Python script.
argv[0] is the script name.

	.pop [https://docs.python.org/3/tutorial/datastructures.html#tut-morelists]
	removes the element at the given position in the list and returns it. If no
index is specified, .pop() removes the last element in the list and
returns it.

The argparse module

You can configure a script to accept command line options as well as arguments.
The argparse [https://docs.python.org/3/library/argparse.html] module supports parsing of
different argument types and can even generate messages. To use the argparse
module, create an instance of ArgumentParser [https://docs.python.org/3/library/argparse.html#argparse.ArgumentParser], fill it with arguments, and then read both
the optional and positional arguments. The following example illustrates the use
of the module:

--- /home/docs/checkouts/readthedocs.org/user_builds/python-basics-tutorial/checkouts/24.1.0/docs/modules/wc.py
+++ /home/docs/checkouts/readthedocs.org/user_builds/python-basics-tutorial/checkouts/24.1.0/docs/modules/wcargparse.py
@@ -1,10 +1,15 @@
 """wc module. Contains function: words_occur()"""
+
+from argparse import ArgumentParser

 def words_occur():
 """words_occur() - count the occurrences of words in a file."""
+ parser = ArgumentParser()
 # Prompt user for the name of the file to use.
- file_name = input("Enter the name of the file: ")
+ parser.add_argument("-f", "--file", dest="filename", help="read data from the file")
+ args = parser.parse_args()
+ file_name = args.filename
 # Open the file, read it and store its words in a list.
 f = open(file_name, "r")
 word_list = f.read().split()
@@ -16,8 +21,8 @@
 occurs_dict[word] = occurs_dict.get(word, 0) + 1
 # Print out the results.
 print(
- f"File {file_name} has {len(word_list)} words, "
- f"{len(occurs_dict)} are unique:"
+ "File %s has %d words (%d are unique)"
+ % (file_name, len(word_list), len(occurs_dict))
)
 print(occurs_dict)

This code creates an instance of ArgumentParser and then adds the filename
argument. The argparse module returns a namespace object that contains the
arguments as attributes. You can retrieve the values of the arguments with dot
notation, in our case with args.filename.

You can now call the script with:

$ python3 wcargparse.py -f index.rst

In addition, a help option -h or --help is automatically generated:

$ python3 wcargparse.py -h
usage: wcargparse.py [-h] [-f FILENAME]

optional arguments:
 -h, --help show this help message and exit
 -f FILENAME, --file FILENAME
 read data from the file

 Programme libraries

Programme libraries

Several Modules can be grouped together in a programme library.
Such libraries allow you to group modules into directories and subdirectories
and then import and hierarchically reference them using a
package.subpackage.module syntax. This does not require much more than the
creation of a possibly empty initialisation file for each package or subpackage.

 „Batteries included“

„Batteries included“

In Python, a library can consist of several components, including built-in data
types and constants that can be used without an import statement, such as
Numbers and Lists, as well as some built-in
Functions and Exceptions. The largest part
of the library is an extensive collection of Modules. If you have
Python installed, there are also several libraries available for you to use.

	Managing data types

	Changing files

	Interacting with the operating system

	Use of Internet protocols

	Developing and debugging

Managing data types

The standard library naturally contains support for the types built into Python.
In addition, there are three categories in the standard library that deal with
different data types: Modules for strings, datatypes and numbers.

String modules

:

	Module

	Description

	string [https://docs.python.org/3/library/string.html#module-string]

	compares with constants such as string.digits [https://docs.python.org/3/library/string.html#string.digits] or
string.whitespace [https://docs.python.org/3/library/string.html#string.whitespace]

	re [https://docs.python.org/3/library/re.html#module-re]

	searches and replaces text with regular expressions

	struct [https://docs.python.org/3/library/struct.html#module-struct]

	interprets bytes as packed binary data

	difflib [https://docs.python.org/3/library/difflib.html#module-difflib]

	helps to calculate deltas, find differences between strings or sequences and
create patches and diff files

	textwrap [https://docs.python.org/3/library/textwrap.html#module-textwrap]

	wraps and fills text, formats text with line breaks or spaces

See also

	Manipulation of strings with pandas [https://www.python4data.science/en/latest/workspace/pandas/string-manipulation.html]

Modules for data types

	Module

	Description

	datetime [https://docs.python.org/3/library/datetime.html#module-datetime],
calendar [https://docs.python.org/3/library/calendar.html#module-calendar]

	Time and calendar operations

	collections [https://docs.python.org/3/library/collections.html#module-collections]

	Container data types

	enum [https://docs.python.org/3/library/enum.html#module-enum]

	allows the creation of enumeration classes that bind symbolic names to
constant values

	array [https://docs.python.org/3/library/array.html#module-array]

	Efficient arrays of numeric values

	sched [https://docs.python.org/3/library/sched.html#module-sched]

	Event scheduler

	queue [https://docs.python.org/3/library/queue.html#module-queue]

	Synchronised queue class

	copy [https://docs.python.org/3/library/copy.html#module-copy]

	Shallow and deep copy operations

	pprint [https://docs.python.org/3/library/pprint.html#module-pprint]

	prints Python data structures „pretty“.

	typing [https://docs.python.org/3/library/typing.html#module-typing]

	supports commenting code with hints about the types of objects, especially
function parameters and return values

Modules for numbers

:

	Module

	Description

	numbers [https://docs.python.org/3/library/numbers.html#module-numbers]

	for numeric abstract base classes

	math [https://docs.python.org/3/library/math.html#module-math],
cmath [https://docs.python.org/3/library/cmath.html#module-cmath]

	for mathematical functions for real and complex numbers

	decimal [https://docs.python.org/3/library/decimal.html#module-decimal]

	for decimal fixed-point and floating-point arithmetic

	statistics [https://docs.python.org/3/library/statistics.html#module-statistics]

	for functions for calculating mathematical statistics

	fractions [https://docs.python.org/3/library/fractions.html#module-fractions]

	for rational numbers

	random [https://docs.python.org/3/library/random.html#module-random]

	for generating pseudo-random numbers and selections and for shuffling
sequences

	itertools [https://docs.python.org/3/library/itertools.html#module-itertools]

	for functions that create iterators for efficient loops

	functools [https://docs.python.org/3/library/functools.html#module-functools]

	for higher-order functions and operations on callable objects

	operator [https://docs.python.org/3/library/operator.html#module-operator]

	for standard operators as functions

Changing files

:

	Module

	Description

	os.path [https://docs.python.org/3/library/os.path.html#module-os.path]

	performs common pathname manipulations

	pathlib [https://docs.python.org/3/library/pathlib.html#module-pathlib]

	manipulates pathnames

	fileinput [https://docs.python.org/3/library/fileinput.html#module-fileinput]

	iterates over multiple input files

	filecmp [https://docs.python.org/3/library/filecmp.html#module-filecmp]

	compares files and directories

	tempfile [https://docs.python.org/3/library/tempfile.html#module-tempfile]

	creates temporary files and directories

	glob [https://docs.python.org/3/library/glob.html#module-glob],
fnmatch [https://docs.python.org/3/library/fnmatch.html#module-fnmatch]

	use UNIX-like path and file name patterns

	linecache [https://docs.python.org/3/library/linecache.html#module-linecache]

	randomly accesses lines of text

	shutil [https://docs.python.org/3/library/shutil.html#module-shutil]

	performs higher level file operations

	mimetypes [https://docs.python.org/3/library/mimetypes.html#module-mimetypes]

	Assignment of file names to MIME types

	pickle [https://docs.python.org/3/library/pickle.html#module-pickle],
shelve [https://docs.python.org/3/library/shelve.html#module-shelve]

	enable Python object serialisation and persistence, see also
The pickle module

	csv [https://docs.python.org/3/library/csv.html#module-csv]

	reads and writes CSV files

	json [https://docs.python.org/3/library/json.html#module-json]

	JSON encoder and decoder

	sqlite3 [https://docs.python.org/3/library/sqlite3.html#module-sqlite3]

	provides a DB-API 2.0 interface for SQLite databases, see also
The sqlite module

	xml [https://docs.python.org/3/library/xml.html#module-xml],
xml.parsers.expat [https://docs.python.org/3/library/pyexpat.html#module-xml.parsers.expat],
xml.dom [https://docs.python.org/3/library/xml.dom.html#module-xml.dom],
xml.sax [https://docs.python.org/3/library/xml.sax.html#module-xml.sax],
xml.etree.ElementTree [https://docs.python.org/3/library/xml.etree.elementtree.html#module-xml.etree.ElementTree]

	reads and writes XML files, see also R:doc:../save-data/xml

	html.parser [https://docs.python.org/3/library/html.parser.html#module-html.parser],
html.entities [https://docs.python.org/3/library/html.entities.html#module-html.entities]

	Parsing HTML and XHTML

	configparser [https://docs.python.org/3/library/configparser.html#module-configparser]

	reads and writes Windows-like configuration files (.ini)

	base64 [https://docs.python.org/3/library/base64.html#module-base64],
binhex,
binascii [https://docs.python.org/3/library/binascii.html#module-binascii],
quopri [https://docs.python.org/3/library/quopri.html#module-quopri],
uu [https://docs.python.org/3/library/uu.html#module-uu]

	encodes/decodes files or streams

	struct [https://docs.python.org/3/library/struct.html#module-struct]

	reads and writes structured data to and from files

	zlib [https://docs.python.org/3/library/zlib.html#module-zlib],
gzip [https://docs.python.org/3/library/gzip.html#module-gzip],
bz2 [https://docs.python.org/3/library/bz2.html#module-bz2],
zipfile [https://docs.python.org/3/library/zipfile.html#module-zipfile],
tarfile [https://docs.python.org/3/library/tarfile.html#module-tarfile]

	for working with archive files and compressions

See also

	pandas IO tools [https://www.python4data.science/en/latest/data-processing/pandas-io.html]

	Examples of serialisation formats CSV [https://www.python4data.science/en/latest/data-processing/serialisation-formats/csv/example.html],
JSON [https://www.python4data.science/en/latest/data-processing/serialisation-formats/json/example.html],
Excel [https://www.python4data.science/en/latest/data-processing/serialisation-formats/excel.html],
XML/HTML [https://www.python4data.science/en/latest/data-processing/serialisation-formats/xml-html/index.html],
YAML [https://www.python4data.science/en/latest/data-processing/serialisation-formats/yaml/example.html],
TOML [https://www.python4data.science/en/latest/data-processing/serialisation-formats/toml/example.html]
und Pickle [https://www.python4data.science/en/latest/data-processing/serialisation-formats/pickle/pickle-examples.html].

Interacting with the operating system

	Module

	Description

	os [https://docs.python.org/3/library/os.html#module-os]

	Various operating system interfaces

	platform [https://docs.python.org/3/library/platform.html#module-platform]

	Access to the identification data of the underlying platform

	time [https://docs.python.org/3/library/time.html#module-time]

	Time access and conversions

	io [https://docs.python.org/3/library/io.html#module-io]

	Tools for working with data streams

	select [https://docs.python.org/3/library/select.html#module-select]

	Waiting for I/O completion

	optparse [https://docs.python.org/3/library/optparse.html#module-optparse]

	Parser for command line options

	curses [https://docs.python.org/3/library/curses.html#module-curses]

	Terminal handling for character cell displays

	getpass [https://docs.python.org/3/library/getpass.html#module-getpass]

	Portable password entry

	ctypes [https://docs.python.org/3/library/ctypes.html#module-ctypes]

	provides C-compatible data types

	threading [https://docs.python.org/3/library/threading.html#module-threading]

	high-level threading interface

	multiprocessing [https://docs.python.org/3/library/multiprocessing.html#module-multiprocessing]

	Process-based threading interface

	subprocess [https://docs.python.org/3/library/subprocess.html]

	Management of subprocesses

Use of Internet protocols

	Module

	descriptiong

	socket [https://docs.python.org/3/library/socket.html#module-socket],
ssl [https://docs.python.org/3/library/ssl.html#module-ssl]

	Low-level network interface and SSL wrapper for socket objects

	email [https://docs.python.org/3/library/email.html#module-email]

	Email and MIME processing package

	mailbox [https://docs.python.org/3/library/mailbox.html#module-mailbox]

	Manipulation of mailboxes in various formats

	cgi [https://docs.python.org/3/library/cgi.html#module-cgi],
cgitb [https://docs.python.org/3/library/cgitb.html#module-cgitb]

	Common Gateway Interface support

	wsgiref [https://docs.python.org/3/library/wsgiref.html#module-wsgiref]

	WSGI utilities and reference implementation

	urllib.request [https://docs.python.org/3/library/urllib.request.html#module-urllib.request],
urllib.parse [https://docs.python.org/3/library/urllib.parse.html#module-urllib.parse]

	Open and parse URLs

	ftplib [https://docs.python.org/3/library/ftplib.html#module-ftplib],
poplib [https://docs.python.org/3/library/poplib.html#module-poplib],
imaplib [https://docs.python.org/3/library/imaplib.html#module-imaplib],
nntplib [https://docs.python.org/3/library/nntplib.html#module-nntplib],
smtplib [https://docs.python.org/3/library/smtplib.html#module-smtplib],
telnetlib [https://docs.python.org/3/library/telnetlib.html#module-telnetlib]

	Clients for various Internet protocols

	socketserver [https://docs.python.org/3/library/socketserver.html#module-socketserver]

	Framework for network servers

	http.server [https://docs.python.org/3/library/http.server.html#module-http.server]

	HTTP server

	xmlrpc.client [https://docs.python.org/3/library/xmlrpc.client.html#module-xmlrpc.client],
xmlrpc.server [https://docs.python.org/3/library/xmlrpc.server.html#module-xmlrpc.server]

	XML-RPC client and server

Developing and debugging

	Module

	Description

	pydoc [https://docs.python.org/3/library/pydoc.html#module-pydoc]

	Documentation generator and online help system

	doctest [https://docs.python.org/3/library/doctest.html#module-doctest]

	Test examples from Python docstrings

	unittest [https://docs.python.org/3/library/unittest.html#module-unittest]

	Framework for unittests, see also Unittest

	test.support [https://docs.python.org/3/library/test.html#module-test.support]

	Utility functions for tests

	trace [https://docs.python.org/3/library/trace.html#module-trace]

	traces the execution of Python statements

	pdb [https://docs.python.org/3/library/pdb.html#module-pdb]

	Python debugger

	logging [https://docs.python.org/3/library/logging.html#module-logging]

	logging function for Python

	timeit [https://docs.python.org/3/library/timeit.html#module-timeit]

	measures the execution time of small code snippets

	profile [https://docs.python.org/3/library/profile.html#module-profile],
cProfile [https://docs.python.org/3/library/profile.html#module-cProfile]

	Python profiler

	sys [https://docs.python.org/3/library/sys.html#module-sys]

	System-specific parameters and functions

	gc [https://docs.python.org/3/library/gc.html#module-gc]

	Functions of the Python garbage collector

	inspect [https://docs.python.org/3/library/inspect.html#module-inspect]

	inspects objects live

	atexit [https://docs.python.org/3/library/atexit.html#module-atexit]

	exit handler

	__future__ [https://docs.python.org/3/library/__future__.html#module-__future__]

	Future statement definitions

	imp

	allows access to the import internals

	zipimport [https://docs.python.org/3/library/zipimport.html#module-zipimport]

	imports modules from zip archives

	modulefinder [https://docs.python.org/3/library/modulefinder.html#module-modulefinder]

	finds modules used by a script

 Adding more Python libraries

Adding more Python libraries

Although Python’ „Batteries included“ philosophy means that you can already do a lot
with the default installation of Python, there will inevitably come a situation
where you need functionality that is not included in Python. This section gives
an overview of the options available to you.

If you are lucky, you will find the extra functionality you need in a package
for your operating system – with a Windows or macOS executable installer, or a
package for your Linux distribution.

This is one of the easiest ways to add a library to your Python installation, as
the installer or your package manager will take care of all the details to
correctly add the module to your system. In general, however, such pre-built
packages are not the norm for Python software.

Installing Python libraries with pip and venv

If you need a third-party module that is not pre-built for your platform, you
will have to turn to its source distribution. However, this brings two problems:

	To install the source distribution, you need to find and download it.

	Certain Python paths and permissions on your system are expected.

Python offers pip as a current solution to both problems. pip tries
to find the module in the Python Package Index (PyPI), downloads
it and all dependencies, and takes care of the installation. The basic syntax of
pip is quite simple: for example, to install the popular requests
library from the command line, all you have to do is the following:

$ python3.8 -m pip install requests

If you want to specify a particular version of a package, you can simply append
the version numbers:

$ python3.8 -m pip install requests==2.28.1

or

$ python3.8 -m pip install requests>=2.28.0

Installing with the --user option

Often, however, you will not be able or willing to install a Python package in
the main Python instance. Maybe you need a more recent version of a library, but
another application still needs an older version. Or maybe you don’t have
sufficient administrator rights to change the system’s default Python. In such
cases, one possibility is to install the library with the --user flag: this
installs the library in the home directory, where it can then only be used by
you:

$ python3.8 -m pip install --user requests

See also

	Installing Python Modules [https://docs.python.org/3/installing/index.html]

Virtual environments

However, there is an even better option if you want to avoid installing
libraries in the Python system. This option is called a virtual environment
virtualenv). It is a self-contained directory structure that contains
both an installation of Python and the additional packages. Because the entire
Python environment is contained in the virtual environment, the libraries and
modules installed there cannot collide with those in the main system or in other
virtual environments, so different applications can use different versions of
Python and its packages. Creating and using a virtual environment is a two-step
process:

	First we create the environment:

Linux/macOS
$ python3 -m venv myenv

Windows
> python -m venv myenv

 Packages and programmes

Packages and programmes

wheels

The current standard format for distributing Python libraries and programs is
the use of wheels. wheels are designed to make the installation
of Python code more reliable and to make dependency management easier. However,
the details of creating wheels are beyond the scope of this section, but full
details of the requirements and process for creating wheels can be found in
Creating a distribution package.

See also

	Pradyun Gedam: Thoughts on the Python packaging ecosystem [https://pradyunsg.me/blog/2023/01/21/thoughts-on-python-packaging/]

py2exe and py2app

py2exe [https://www.py2exe.org/] creates standalone Windows applications and
py2app [https://py2app.readthedocs.io/en/latest/] does the same for macOS. In
both cases, these are single executables that can run on machines that do not
have Python installed. In many ways, however, standalone executables are not
ideal, as they tend to be larger and less flexible than native Python
applications, but in some situations they can also be the best or only solution.

freeze

The freeze tool also creates an executable Python programme that runs on
computers that do not have Python installed. If you want to use the freeze
tool, you will probably need to download the Python source code.

Freezing a Python program creates C files that are then compiled and linked
with a C compiler that you must have installed on your system. The application
thus frozen will only run on platforms for which the C compiler used provides
its executables.

See also

	Tools/freeze [https://github.com/python/cpython/tree/main/Tools/freeze]

PyInstaller and PyOxidizer

PyInstaller [https://pyinstaller.org/en/stable/index.html#] and PyOxidizer [https://pyoxidizer.readthedocs.io/en/pyoxidizer-0.17/index.html] bundle a
Python application and all its dependencies into a single package.

Briefcase

Briefcase [https://beeware.org/project/projects/tools/briefcase/] is a tool
for converting a Python project into a standalone native application for Mac,
Windows, Linux, iPhone/iPad and Android.

 Creating a distribution package

Creating a distribution package

Distribution Packages are archives that can be
uploaded to a package index such as pypi.org and installed with
pip.

Some of the following commands require a new version of pip, so you should make
sure you have the latest version installed:

Linux/macOS
$ python3 -m pip install --upgrade pip

Windows
> python -m pip install --upgrade pip

 GitLab Package Registry

GitLab Package Registry

You can also publish your distribution packages in the package registry of your
GitLab project and use them with both Pip and twine.

See also

PyPI packages in the Package Registry [https://docs.gitlab.com/ee/user/packages/pypi_repository/#publish-a-pypi-package-by-using-twine]

Authentication

To authenticate to the GitLab Package Registry, you can use one of the following
methods:

	A personal access token with the scope
api.

	A deploy token with the scopes
read_package_registry, write_package_registry or both.

	A CI job token..

… with a personal access token

To authenticate yourself with a personal access token, you can add the following
to the ~/.pypirc file, for example:

[distutils]
index-servers=
 gitlab

[gitlab]
repository = https://ce.cusy.io/api/v4/projects/{PROJECT_ID}/packages/pypi
username = {NAME}
password = {YOUR_PERSONAL_ACCESS_TOKEN}

… with a deploy token

[distutils]
index-servers =
 gitlab

[gitlab]
repository = https://ce.cusy.io/api/v4/projects/{PROJECT_ID}/packages/pypi
username = {DEPLOY_TOKEN_USERNAME}
password = {DEPLOY_TOKEN}

… with a job token

image: python:latest

run:
 script:
 - pip install build twine
 - python -m build
 - TWINE_PASSWORD=${CI_JOB_TOKEN} TWINE_USERNAME=gitlab-ci-token python -m twine upload --repository-url ${CI_API_V4_URL}/projects/${CI_PROJECT_ID}/packages/pypi dist/*

… for access to packages within a group

Use the GROUP_URL instead of the PROJECT_ID.

Publishing the distribution package

You can publish your package with the help of twine:

python3 -m twine upload --repository gitlab dist/*

Note

If you try to publish a package that already exists with the same name and
version, you will get the error 400 Bad Request; you will have to delete
the existing package first.

Installing the package

You can install the latest version of your package for example with

pip install --index-url https://{NAME}:{PERSONAL_ACCESS_TOKEN}@ce.cusy.io/api/v4/projects/{PROJECT_ID}/packages/pypi/simple --no-deps {PACKAGE_NAME}

… or from the group level with

pip install --index-url https://{NAME}:{PERSONAL_ACCESS_TOKEN}@ce.cusy.io/api/v4/groups/{GROUP_ID}/-/packages/pypi/simple --no-deps {PACKAGE_NAME}

… or in the requirements.txt file with

--extra-index-url https://ce.cusy.io/api/v4/projects/{PROJECT_ID}/packages/pypi/simple {PACKAGE_NAME}

 Templating

Templating

With Cookiecutter [https://cookiecutter.readthedocs.io/], file structures
can be created which simplify the creation of Python packages significantly.

See also

	Copier [https://copier.readthedocs.io/en/stable/]

 CookieCutter features

CookieCutter features

	Cross-platform: Windows, Mac and Linux are supported

	works with Python 3.6, 3.7, 3.8 and PyPy3

	The project templates can be created for any programming language and any
markup format: Python, JavaScript, Ruby, ReST, CSS, HTML. Several languages
can also be used in the same template.

	Templates can be easily adapted in the terminal:

$ cookiecutter https://github.com/veit/cookiecutter-namespace-template
full_name [Veit Schiele]:
…

	You can also use local templates:

$ cookiecutter cookiecutter-namespace-template

	Alternatively you can also use CookieCutter with Python:

$ bin/python
>>> from cookiecutter.main import cookiecutter
>>> cookiecutter('.https://github.com/veit/cookiecutter-namespace-template.git')
full_name [Veit Schiele]:
…

	Directory and file names can be assigned to templates, for example:

{{cookiecutter.project_name}}/{{cookiecutter.namespace}}/{{cookiecutter.package_name}}/{{cookiecutter.project_slug}}.py

	The nesting depth is unlimited

	The templating is based on Jinja [https://jinja.palletsprojects.com/]

	You can simply save your template variables in a cookiecutter.json file,
for example:

{
 "full_name": "Veit Schiele",
 "email": "veit@example.org",
 "github_username": "veit",
 "project_name": "vsc.example",
 "project_slug": "{{ cookiecutter.project_name.lower().replace(' ', '_').replace('-', '_') }}",
 "namespace": "{{ cookiecutter.project_slug.split('.')[0] }}",
 "package_name": "{{ cookiecutter.project_slug.split('.')[1] }}",
 "project_short_description": "Python Namespace Package contains all you need to create a Python namespace package.",
 "pypi_username": "veit",
 "use_pytest": "y",
 "command_line_interface": ["Click", "No command-line interface"],
 "version": "0.1.0",
 "create_author_file": "y",
 "license": ["MIT license", "BSD license", "ISC license", "Apache Software License 2.0", "GNU General Public License v3", "Not open source"]
}

	You can also save the values for several templates in ~/cookiecutterrc:

default_context:
 full_name: "Veit Schiele"
 email: "veit@cusy.io"
 github_username: "veit"
cookiecutters_dir: "~/.cookiecutters/"

	CookieCutter templates loaded from a repository are usually stored in
~/.cookiecutters/. Then they can be referenced directly via their
directory name, e.g. with:

$ cookiecutter cookiecutter-namespace-package

 Available templates

Available templates

Python

	cookiecutter-namespace-template [https://github.com/veit/cookiecutter-namespace-template]
	Namespace template for Python packages

	cookiecutter-pypackage [https://github.com/audreyr/cookiecutter-pypackage]
	Template for Python packages

	cookiecutter-pytest-plugin [https://github.com/pytest-dev/cookiecutter-pytest-plugin]
	Minimal CookiexrCtter template for creating Pytest [https://docs.pytest.org/] plugins

	cookiecutter-pylibrary [https://github.com/ionelmc/cookiecutter-pylibrary]
	Comprehensive template for Python packages with support for tests and
Deployments (C extension support for cffi [https://cffi.readthedocs.io/] and Cython [http://cython.org/],
test support for Tox [https://tox.readthedocs.io/],
Pytest [https://docs.pytest.org/], Travis-CI [https://travis-ci.org/],
Coveralls [https://github.com/coveralls-clients/coveralls-python],
Codacy [https://github.com/codacy/python-codacy-coverage/],
and Code Climate [https://github.com/codeclimate/python-test-reporter],
documentation with Sphinx [http://www.sphinx-doc.org/],
packaging checks with scrutinizer [https://scrutinizer-ci.com/docs/guides/python/], Isort [https://github.com/PyCQA/isort] etc.

	cookiecutter-python-cli [https://github.com/seanluong/cookiecutter-python-cli]
	Template for creating a Python CLI application with Click [https://click.palletsprojects.com/]

	widget-cookiecutter [https://github.com/jupyter-widgets/widget-cookiecutter]
	Template for creating Jupyter widgets

Ansible

	cookiecutter-ansible-role-ci [https://github.com/ferrarimarco/cookiecutter-ansible-role]
	Template for Ansible roles

C

	bootstrap.c [https://github.com/vincentbernat/bootstrap.c]
	Template for projects written in C with Autotools [https://www.lrde.epita.fr/~adl/autotools.html]

	cookiecutter-avr [https://github.com/solarnz/cookiecutter-avr]
	Template for AVR development

C++

	BoilerplatePP [https://github.com/Paspartout/BoilerplatePP]
	cmake template with unit tests for C ++ projects

Scala

	cookiecutter-scala [https://github.com/Plippe/cookiecutter-scala]
	Template for a Hello world example with a few libraries

	cookiecutter-scala-spark [https://github.com/jpzk/cookiecutter-scala-spark]
	Template for an Apache-Spark [https://spark.apache.org/] application

LaTeX/XeTeX

	pandoc-talk [https://github.com/larsyencken/pandoc-talk]
	Template for presentations with pandoc [https://pandoc.org/] and XeTeX [https://de.wikipedia.org/wiki/XeTeX]

 Overview

Overview

A minimal CookieCutter template looks like this:

cookiecutter-namespace-template/
├── {{ cookiecutter.project_name }}/ <--- Project template
│ └── …
└── cookiecutter.json <--- Prompts & default values

For jsonexample, the file cookiecutter.json can look like this:

{
 "full_name": "Veit Schiele",
 "email": "veit@example.org",
 "github_username": "veit",
 "project_name": "vsc.example",
 "project_slug": "{{ cookiecutter.project_name.lower().replace(' ', '_').replace('-', '_') }}",
 "namespace": "{{ cookiecutter.project_slug.split('.')[0] }}",
 "package_name": "{{ cookiecutter.project_slug.split('.')[1] }}",
 "project_short_description": "Python Namespace Package contains all you need to create a Python namespace package.",
 "pypi_username": "veit",
 "use_pytest": "y",
 "command_line_interface": ["Click", "No command-line interface"],
 "version": "0.1.0",
 "create_author_file": "y",
 "license": ["MIT license", "BSD license", "ISC license", "Apache Software License 2.0", "GNU General Public License v3", "Not open source"]
}

In addition, any number of directories and files can be created.

As a result you will get the following file structure:

my.package/ <--- Value corresponding to what you enter
│ at the project_name prompt
│
└── … <--- Files corresponding to those in your
 cookiecutter’s
 {{ cookiecutter.project_name }}/ directory

 Installation

Installation

Requirements

	Python interpreter

	Path to the base directory for your Python packages

Make sure your bin bindirectory is in the path. Usually this is
~/.local/ for Linux and Mac OS or %APPDATA%\Python. on Windows. You
can find more information at site.USER_BASE [https://docs.python.org/3/library/site.html#site.USER_BASE].

Linux/macOS
For bash you can enter the path in your ~/.bash_profile:

export PATH=$HOME/.local/bin:$PATH

and then read the file with:

$ source ~/.bash_profile

Windows
Make sure the directory where CookieCutter will be installed is in your
Path so you can go directly to it. To do this, look for Environment
Variables on your computer and add this directory to Path, for
example %APPDATA%\Python\Python3x\Scripts. Then you probably have to
restart the session in order to be able to use the environment variables.

See also

Configuring Python [https://docs.python.org/3/using/windows.html#configuring-python]

 Advanced usage

Advanced usage

Hooks

You can write pre- or post-generate hooks. The Jinja template variables will be
integrated into the scripts, for example:

if 'Not open source' == '{{ cookiecutter.license }}':
 remove_file('LICENSE')

Variables, for example, can be validated in a pre-generate hook:

import re
import sys

MODULE_REGEX = r'^[_a-zA-Z][_a-zA-Z0-9]+$'

module_name = '{{ cookiecutter.module_name }}'

if not re.match(MODULE_REGEX, module_name):
 print(f'ERROR: {module_name} is not a valid Python module name!')

 # exits with status 1 to indicate failure
 sys.exit(1)

User config

If you use CookieCutter frequently, we recommend your own user config
~/cookiecutterrc, e.g.:

default_context:
 full_name: "Veit Schiele"
 email: "veit@cusy.io"
 github_username: "veit"
cookiecutters_dir: "~/.cookiecutters/"
replay_dir: "~/.cookiecutter_replay/"

Replay

When calling cookiecutter a json file is created in
/.cookiecutter_replay/, for example
~/.cookiecutter_replay/cookiecutter-namespace-template.json:

{"cookiecutter": {"full_name": "Veit Schiele", "email": "veit@cusy.io", "github_username": "veit", "project_name": "vsc.example", "project_slug": "vsc.example", "namespace": "vsc", "package_name": "example", "project_short_description": "Python Namespace Package contains all you need to create a Python namespace package.", "pypi_username": "veit", "use_pytest": "y", "command_line_interface": "Click", "version": "0.1.0", "create_author_file": "y", "license": "MIT license", "_template": "https://github.com/veit/cookiecutter-namespace-template"}}

If you want to use this information without having to confirm them again in the
command line, you can simply enter the following:

$ cookiecutter --replay gh:veit/cookiecutter-namespace-template

Alternatively, the Python API can also be used:

from cookiecutter.main import cookiecutter
cookiecutter('gh:'veit/cookiecutter-namespace-template, replay=True)

This function is helpful if you want to create a project from an updated
template, for example.

Selection variables

Selection variables offer various options when creating a project. Depending on
the user’s choice, the template renders it differently, e.g. if in the
cookiecutter.json file the following selection is offered:

{
 "license": ["MIT license", "BSD license", "ISC license", "Apache Software License 2.0", "GNU General Public License v3", "Other/Proprietary License"]
}

This is interpreted in
cookiecutter-namespace-template/{{cookiecutter.project_name}}/README.rst

{% set is_open_source = cookiecutter.license != 'Not open source' -%}
{% if is_open_source %}
 …
{%- endif %}

{% if is_open_source %}
 …
{% endif %}

and in cookiecutter-namespace-template/hooks/post_gen_project.py:

if 'Not open source' == '{{ cookiecutter.license }}':
 remove_file('LICENSE')

 cruft

cruft

One problem with cookiecutter templates is that projects based on older versions
of the template become obsolete when only the template is adapted to changing
requirements over time. cruft [https://cruft.github.io/cruft/] tries to
simplify the transfer of changes in the Cookiecutter-Templates’s Git repository to projects derived from it.

The main features of cruft are:

	With cruft check you can quickly check if a project uses the latest
version of a template. This check can also be easily integrated into CI
pipelines to ensure that your projects are in sync.

	cruft also automates the update of projects from cookiecutter templates.

Installation

$ python3.8 -m pip install cruft

Create a new project

To create a new project with cruft, you can run cruft create
PROJECT_URL on the command line, for example:

$ cruft create https://github.com/veit/cookiecutter-namespace-template
full_name [Veit Schiele]:
…

cruft uses Cookiecutter for this and the only difference in
the resulting output is a .cruft.json file that contains the git hash of
the template used as well as the specified parameters.

Tip

Certain files are rarely suitable for updating, for example test cases or
__init__ files. You can tell cruft to always skip updating these
files in a project by creating the project with the arguments
--skip vsc/__init__.py --skip tests or manually adding them to a
skip section in your .cruft.json file:

{
 "template": "https://github.com/veit/cookiecutter-namespace-template",
 "commit": "521d4b2aa603aec186cd7e542295edb458ba4552",
 "skip": [
 "vsc/__init__.py",
 "tests"
],
 "checkout": null,
 "context": {
 "cookiecutter": {
 "full_name": "Veit Schiele",
 ...
 }
 },
 "directory": null
}

Updating a project

To update an existing project that was created with cruft, you can run cruft
update in the root directory of the project. If there are updates, cruft will
first ask you to review them. If you accept the changes, cruft will apply them
to your project and update the .cruft.json file.

Checking a project

To see if a project has missed a template update, you can easily call cruft
check. If the project is out of date, an error and exit code 1 will be
returned. cruft check can also be added to
pre-commit framework [https://www.python4data.science/en/latest/productive/git/advanced/hooks/pre-commit.html] and CI
pipelines to ensure projects don’t become unintentionally stale.

Linking an existing project

If you have an existing project that you created in the past with Cookiecutter
directly from a template, you can cruft link TEMPLATE_REPOSITORY to
link it to the template it was created with, for example:

$ cruft link https://github.com/veit/cookiecutter-namespace-template

You can then specify the last commit of the template that updated the project,
or accept the default to use the last commit.

Show diff

Over time, your project may differ greatly from the actual cookiecutter
template. cruft diff allows you to quickly see what has changed in your
local project compared to the template.

 Upload package

Upload package

Finally, you can deploy the package on the Python Package Index
(PyPI) or another index, for example GitLab Package Registry or devpi.

For this you should register on Test PyPI. Test-PyPI is a separate instance
that is intended for testing and experimentation. To set up an account there, go
to https://test.pypi.org/account/register/. For more information, see Using
TestPyPI [https://packaging.python.org/guides/using-testpypi/].

Now you can create the ~/.pypirc file:

[distutils]
index-servers=
 test

[test]
repository = https://test.pypi.org/legacy/
username = veit

See also

If you’d like to automate PyPI registration, please read Careful With That
PyPI [https://glyph.twistedmatrix.com/2017/10/careful-with-that-pypi.html].

After you are registered, you can upload your Distribution Package with
twine. To do this, however, you must first install twine with:

$ python -m pip install --upgrade pip build twine
…
All dependencies are now up-to-date!

Note

Run this command before each release to ensure that all release tools are up
to date.

Now you can create your Distribution Packages
with:

$ cd /path/to/your/distribution_package
$ rm -rf build dist
$ python -m build

After installing Twine you can upload all archives in /dist to the Python
Package Index with:

$ twine upload -r test -s dist/*

	-r, --repository
	The repository to upload the package.

In our case, the test section from the ~/.pypirc file is used.

	-s, --sign
	signs the files to be uploaded with GPG.

You will be asked for the password you used to register on Test PyPI. You
should then see a similar output:

Uploading distributions to https://test.pypi.org/legacy/
Enter your username: veit
Enter your password:
Uploading example-0.0.1-py3-none-any.whl
100%|█████████████████████| 4.65k/4.65k [00:01<00:00, 2.88kB/s]
Uploading example-0.0.1.tar.gz
100%|█████████████████████| 4.25k/4.25k [00:01<00:00, 3.05kB/s]

Note

If you get an error message similar to

The user 'veit' isn't allowed to upload to project 'example'

you have to choose a unique name for your package:

	change the name argument in the setup.py file

	remove the dist directory

	regenerate the archives

Check

Installation

You can use pip to install your package and check if it works. Create
a new virtual environment and install your package on Test PyPI:

$ python3 -m venv test_env
$ source test_env/bin/activate
$ pip install -i https://test.pypi.org/simple/ minimal_example

Note

If you have used a different package name, replace it with your package name
in the command above.

pip should install the package from Test PyPI and the output should
look something like this:

Looking in indexes: https://test.pypi.org/simple/
Collecting minimal_example
 …
Installing collected packages: minimal_example
Successfully installed minimal_example-0.0.1

You can test whether your package has been installed correctly by importing the
module and referencing the name property that was previously ntered in
__init__.py:

$ python
Python 3.7.0 (default, Aug 22 2018, 15:22:29)
…
>>> import minimal_example
>>> minimal_example.name
'minimal_example'

Note

The packages on Test-PyPI are only stored temporarily. If you want to
upload a package to the real Python Package Index (PyPI),
you can do so by creating an account on pypi.org and following the
same instructions, but using twine upload dist/*.

README

Also check whether the README.rst is displayed correctly on the test PyPI
page.

PyPI

Now register on the Python Package Index (PyPI) and make sure
that two-factor authentication [https://blog.python.org/2019/05/use-two-factor-auth-to-improve-your.html]
is activated by adding the following to the ~/.pypirc file:

[distutils]
index-servers=
 pypi
 test

[test]
repository = https://test.pypi.org/legacy/
username = veit

[pypi]
username = __token__

With this configuration, the name/password combination is no longer used for
uploading but an upload token.

See also

	PyPI now supports uploading via API token [https://pyfound.blogspot.com/2019/07/pypi-now-supports-uploading-via-api.html]

	What is two factor authentication and how does it work on PyPI? [https://pypi.org/help/#twofa]

Finally, you can publish your package on PyPI:

$ twine upload -r pypi -s dist/*

Note

You cannot simply replace releases as you cannot re-upload packages with the
same version number.

Note

Do not remove old versions from the Python Package Index.This only causes
work for those who want to keep using that version and then have to switch
to old versions on GitHub. PyPI has a yank [https://pypi.org/help/#yanked] function that you can use instead. This
will ignore a particular version if it is not explicitly specified with
== or ===.

See also

	PyPI Release Checklist [https://cookiecutter-namespace-template.readthedocs.io/en/latest/pypi-release-checklist.html]

GitHub Action

You can also create a GitHub action, which creates a package and uploads it to
PyPI at every time a release is created. Such a
.github/workflows/pypi.yml file could look like this:

 1name: Publish Python Package
 2
 3 on:
 4 release:
 5 types: [created]
 6
 7jobs:
 8 test:
 9 …
10 package-and-deploy:
11 runs-on: ubuntu-latest
12 needs: [test]
13 steps:
14 - name: Checkout
15 uses: actions/checkout@v2
16 with:
17 fetch-depth: 0
18 - name: Set up Python
19 uses: actions/setup-python@v5
20 with:
21 python-version: '3.11'
22 cache: pip
23 cache-dependency-path: '**/pyproject.toml'
24 - name: Install dependencies
25 run: |
26 python -m pip install -U pip
27 python -m pip install -U setuptools build twine wheel
28 - name: Build
29 run: |
30 python -m build
31 - name: Publish
32 env:
33 TWINE_PASSWORD: ${{ secrets.TWINE_PASSWORD }}
34 TWINE_USERNAME: ${{ secrets.TWINE_USERNAME }}
35 run: |
36 twine upload dist/*

	Lines 3–5
	This ensures that the workflow is executed every time a new GitHub
release is created for the repository.

	Line 12
	The job waits for the test job to pass before it is executed.

See also

	GitHub Actions [https://docs.github.com/en/actions]

Trusted Publishers

Trusted Publishers [https://docs.pypi.org/trusted-publishers/] is an
alternative method for publishing packages on the PyPI. It is based on
OpenID Connect and requires neither a password nor a token. Only the following
steps are required:

	Add a Trusted Publishers on PyPI

Depending on whether you want to publish a new package or update an existing
one, the process is slightly different:

	to update an existing package, see Adding a trusted publisher to an
existing PyPI project [https://docs.pypi.org/trusted-publishers/adding-a-publisher/]

	to publish a new package, there is a special procedure called Pending
Publisher; see also Creating a PyPI project with a trusted publisher [https://docs.pypi.org/trusted-publishers/creating-a-project-through-oidc/]

You can also use it to reserve a package name before you publish the first
version. This allows you to ensure that you can publish the package under
the desired name.

To do this, you need to create a new Pending Publisher in
pypi.org/manage/account/publishing/ [https://pypi.org/manage/account/publishing/] with

	Name of the PyPI project

	GitHub repository owner

	Name of the workflow, for example publish.yml

	Name of the environment (optional), for example release

	Create an environment for the GitHub actions

If we have specified an environment on PyPI, we must now also create
it. This can be done in Settings ‣ Environments for the
repository. The name of our environment is release.

	Configure the workflow

To do this, we now create the .github/workflows/publish.yml file in
our repository:

 1…
 2jobs:
 3 …
 4 deploy:
 5 runs-on: ubuntu-latest
 6 environment: release
 7 permissions:
 8 id-token: write
 9 needs: [test]
10 steps:
11 - name: Checkout
12 …
13 - name: Set up Python
14 …
15 - name: Install dependencies
16 …
17 - name: Build
18 …
19 - name: Publish
20 uses: pypa/gh-action-pypi-publish@release/v1

	Line 6
	This is needed because we have configured an environment in PyPI.

	Lines 7–8
	They are required for the OpenID Connect token authentication to work.

	Lines 19–20
	The package uses the github.com/pypa/gh-action-pypi-publish [https://github.com/pypa/gh-action-pypi-publish] action to publish the
package.

 cibuildwheel

cibuildwheel

cibuildwheel simplifies the creation of Python Wheels
for the different platforms and Python versions through Continuous Integration
(CI) workflows. More precisely it builds manylinux, macOS 10.9+, and Windows
wheels for CPython and PyPy with GitHub Actions, Azure Pipelines, Travis CI,
AppVeyor, CircleCI, or
GitLab CI/CD [https://www.python4data.science/en/latest/productive/git/advanced/gitlab/ci-cd.html].

In addition, it bundles shared library dependencies on Linux and macOS through
auditwheel [https://github.com/pypa/auditwheel] and delocate [https://github.com/matthew-brett/delocate].

Finally, the tests can also run against the wheels.

See also

	Docs [https://cibuildwheel.readthedocs.io/]

	GitHub [https://github.com/pypa/cibuildwheel]

GitHub Actions

To build Linux, macOS, and Windows wheels, create a
.github/workflows/build_wheels.yml file in your GitHub repo:

name: Build

on:
 workflow_dispatch:
 release:
 types:
 - published

	workflow_dispatch
	allows you to click a button in the graphical user interface to trigger a
build. This is perfect for manually testing wheels before a release, as you
can easily download them from artifacts.

See also

	workflow_dispatch [https://github.blog/changelog/2020-07-06-github-actions-manual-triggers-with-workflow_dispatch/]

	release
	is executed when a tagged version is transferred.

See also

	release [https://docs.github.com/en/actions/using-workflows/events-that-trigger-workflows#release]

Now the wheels can be built with:

jobs:
 build_wheels:
 name: Build wheels on ${{ matrix.os }}
 runs-on: ${{ matrix.os }}
 strategy:
 matrix:
 os: [ubuntu-20.04, windows-2019, macos-11]

 steps:
 - uses: actions/checkout@v3

 - name: Build wheels
 uses: pypa/cibuildwheel@v2.15.0

This runs the CI workflow with the following default settings:

	package-dir: .

	output-dir: wheelhouse

	config-file: "{package}/pyproject.toml"

You can also extend the file to automatically upload the wheels to the
Python Package Index (PyPI). For this, however, you should first
create a source distribution, for example with:

 make_sdist:
 name: Make SDist
 runs-on: ubuntu-latest
 steps:
 - uses: actions/checkout@v3
 with:
 fetch-depth: 0 # Optional, use if you use setuptools_scm
 submodules: true # Optional, use if you have submodules

 - name: Build SDist
 run: pipx run build --sdist

 - uses: actions/upload-artifact@v3
 with:
 path: dist/*.tar.gz

In addition, this GitHub workflow must be set in the PyPI settings of your
project:

	Creating a PyPI project with a trusted publisher [https://docs.pypi.org/trusted-publishers/creating-a-project-through-oidc]

	Adding a trusted publisher to an existing PyPI project [https://docs.pypi.org/trusted-publishers/adding-a-publisher]

Now you can finally upload the artefacts of both jobs to the PyPI:

 upload_all:
 needs: [build_wheels, make_sdist]
 environment: pypi
 permissions:
 id-token: write
 runs-on: ubuntu-latest
 if: github.event_name == 'release' && github.event.action == 'published'
 steps:
 - uses: actions/download-artifact@v3
 with:
 name: artifact
 path: dist

 - uses: pypa/gh-action-pypi-publish@release/v1

See also

	Workflow syntax for GitHub Actions [https://docs.github.com/en/actions/reference/workflow-syntax-for-github-actions]

GitLab CI/CD

To build Linux wheels with
GitLab CI/CD [https://www.python4data.science/en/latest/productive/git/advanced/gitlab/ci-cd.html], create a
.gitlab-ci.yml file in your repository:

linux:
 image: python:3.8
 # make a docker daemon available for cibuildwheel to use
 services:
 - name: docker:dind
 entrypoint: ["env", "-u", "DOCKER_HOST"]
 command: ["dockerd-entrypoint.sh"]
 variables:
 DOCKER_HOST: tcp://docker:2375/
 DOCKER_DRIVER: overlay2
 # See https://github.com/docker-library/docker/pull/166
 DOCKER_TLS_CERTDIR: ""
 script:
 - curl -sSL https://get.docker.com/ | sh
 - python -m pip install cibuildwheel==2.15.0
 - cibuildwheel --output-dir wheelhouse
 artifacts:
 paths:
 - wheelhouse/

windows:
 image: mcr.microsoft.com/windows/servercore:1809
 before_script:
 - choco install python -y --version 3.8.6
 - choco install git.install -y
 - py -m pip install cibuildwheel==2.15.0
 script:
 - py -m cibuildwheel --output-dir wheelhouse --platform windows
 artifacts:
 paths:
 - wheelhouse/
 tags:
 - windows

See also

	Keyword reference for the .gitlab-ci.yml file [https://docs.gitlab.com/ee/ci/yaml/]

Optionen

cibuildwheel can be configured either via environment variables or via a
configuration file such as pyproject.toml, for example:

[tool.cibuildwheel]
test-requires = "pytest"
test-command = "pytest {project}/tests"
build-verbosity = 1

support Universal2 for Apple Silicon:
[tool.cibuildwheel.macos]
archs = ["auto", "universal2"]
test-skip = ["*universal2:arm64"]

See also

	cibuildwheel: Options [https://cibuildwheel.readthedocs.io/en/stable/options/]

Examples

	Coverage.py: .github/workflows/kit.yml [https://github.com/nedbat/coveragepy/blob/master/.github/workflows/kit.yml]

	matplotlib: .github/workflows/cibuildwheel.yml [https://github.com/matplotlib/matplotlib/blob/master/.github/workflows/cibuildwheel.yml]

	MyPy: .github/workflows/build.yml [https://github.com/mypyc/mypy_mypyc-wheels/blob/master/.github/workflows/build.yml]

	psutil: .github/workflows/build.yml [https://github.com/giampaolo/psutil/blob/master/.github/workflows/build.yml]

 Binary Extensions

Binary Extensions

One of the features of the CPython interpreter is that in addition to executing
Python code, it also has a rich C API available for use by other software. One
of the most common uses of this C API is to create importable C extensions that
allow things that are difficult to achieve in pure Python code.

Use Cases

The typical use cases for binary extensions can be divided into three
categories:

	Accelerator modules
	These modules are stand-alone and are only created to run faster than the
corresponding pure Python code. Ideally, the accelerator modules always
have a Python equivalent that can be used as a fallback if the accelerated
version is not available on a particular system.

The CPython standard library uses many accelerator modules.

	Wrapper modules
	These modules are created to make existing C interfaces available in Python.
You can either make the underlying C interfaces directly available or
provide a Pythonic API that uses features of Python to make the API easier
to use.

The CPython standard library uses extensive wrapper modules.

	Low-level system access
	These modules are created to access functions of the CPython runtime
environment, the operating system or the underlying hardware. With
platform-specific code, things can be achieved that would not be possible
with pure Python code.

A number of CPython standard library modules are written in C to access
interpreter internals that are not available at the language level.

A particularly noteworthy property of C extensions is that they can release
the Global Interpreter Lock (GIL) of CPython for long-running operations,
regardless of whether these operations are CPU or IO-bound.

Not all expansion modules fit exactly into the above categories. For example,
the extension modules contained in NumPy [https://numpy.org/] cover all
three use cases:

	They move inner loops to C for speed reasons,

	wrap external libraries in C, FORTRAN and other languages and

	use low-level system interfaces of CPython and the underlying operating system
to support the concurrent execution of vectorised operations and to precisely
control the memory layout of objects created.

Disadvantages

In the past, the main disadvantage of using binary extensions was that they made
it difficult to distribute the software. Today this disadvantage due to
wheel is hardly present. However, some disadvantages remain:

	The installation from the sources remains complicated.

	Possibly there is no suitable wheel for the build of the CPython
interpreter or alternative interpreters such as PyPy [https://www.pypy.org/], IronPython [https://ironpython.net/] or Jython [https://ironpython.net/].

	The maintenance of the packages is more time-consuming because the maintainers
not only have to be familiar with Python but also with another language and
the CPython C API. In addition, the complexity increases if a Python fallback
implementation is provided in addition to the binary extension.

	Finally, import mechanisms, such as direct import from ZIP files, often do not
work for extension modules.

Alternatives

… to accelerator modules

If extensions modules are only used to make code run faster, a number of other
alternatives should also be considered:

	Looks for existing optimised alternatives. The CPython standard library
contains a number of optimised data structures and algorithms, especially in
the builtins and the modules collections and itertools.

Occasionally the Python Package Index (PyPI) also offers
additional alternatives. Sometimes a third-party module can avoid the need to
create your own accelerator module.

	For long-running applications, the JIT-compiled PyPy [https://www.pypy.org/] interpreter can be a suitable alternative to the
standard CPython. The main difficulty with adopting PyPy is typically the
dependence on other Binary Extensions modules. While PyPy emulates the
CPython C API, modules that rely on it cause problems for the PyPy JIT, and
the emulation often exposes defects in extension modules that CPython
tolerates. (often with reference counting errors).

	Cython [https://cython.org/] is a sophisticated static compiler that can
compile most Python code into C-Extension modules. The initial compilation
offers some speed increases (by bypassing the CPython interpreter level), and
Cython’s optional static typing functions can provide additional speed
increases. For Python programmers, Cython offers a lower barrier to entry
relative to other languages such as C or C ++).

However, using Cython has the disadvantage of adding complexity to the
distribution of the resulting application.

	Numba [http://numba.pydata.org/] is a newer tool that uses the LLVM
compiler infrastructure [https://llvm.org/] to selectively compile parts of
a Python application to native machine code at runtime. It requires LLVM to be
available on the system the code is running on. It can lead to considerable
increases in speed, especially with vectorisable processes.

… to wrapper modules

The C-ABI (Application Binary Interface [https://en.wikipedia.org/wiki/Application_binary_interface]) is a standard
for the common use of functions between several applications. One of the
strengths of the CPython C-API (Application Programming Interface [https://en.wikipedia.org/wiki/API]) is that Python users can take advantage
of this functionality. However, manually wrapping modules is very tedious, so a
number of other alternatives should be considered.

The approaches described below do not simplify distribution, but they can
significantly reduce the maintenance effort compared to wrapper modules.

	Cython [https://cython.org/] is useful not only for creating accelerator
modules, but also for creating wrapper modules. Since the API still needs to
be wrapped by hand, it is not a good choice when wrapping large APIs.

	cffi [https://cffi.readthedocs.io/] is the project of some PyPy [https://pypy.org/] developers to give developers who already know both
Python and C the possibility to make their C modules available for Python
applications. It makes wrapping a C module based on its header files
relatively easy, even if you are not familiar with C itself.

One of the main advantages of cffi is that it is compatible with the PyPy JIT
so that CFFI wrapper modules can fully participate in the PyPy tracing JIT
optimisations.

	SWIG [http://www.swig.org/] is a wrapper interface generator that combines
a variety of programming languages, including Python, with C and C ++ code.

	The ctypes module of the standard library is useful to get access to C
interfaces, but if the header information is not available, it suffers from
the fact that it only works on the C ABI level and therefore no automatic
consistency check between the exported Interface and the Python code. In
contrast, the alternatives above can all work on the C API and use C header
files to ensure consistency.

	pythoncapi_compat [https://github.com/python/pythoncapi_compat] can be used
to write a C extension that supports multiple Python versions with a single
code base. It consists of the header file pythoncapi_compat.h and the
script upgrade_pythoncapi.py.

… for low-level system access

For applications that require low level system access, a binary extension is
often the best option. This applies in particular to the low level access to the
CPython runtime, since some operations (such as releasing the Global Interpreter
Lock (GIL) are not permitted when the interpreter executes the code itself,
especially when modules such as ctypes or cffi are used to Get access to
the relevant C-API interfaces.

In cases where the expansion module is manipulating the underlying operating
system or hardware (instead of the CPython runtime), it is sometimes better to
write a normal C library (or a library in another programming language such as
C++ or Rust) that provides a C-compatible ABI) and then use one of the wrapping
techniques described above to make the interface available as an importable
Python module.

Implementation

We now want to extend our dataprep package and integrate some C code. For
this we use Cython [https://cython.org/] to translate the Python code from
dataprep/src/dataprep/cymean.pyx into optimised C code during the
build process. Cython files have the suffix pyx and can contain both Python
and C code.

However, we cannot currently use hatchling.build as a build backend, but
instead fall back on a current version of setuptools:

19dependencies = [
20 "Cython",
21 "pandas",
22]

The setuptools use dataprep/setup.py to include non-Python
files in a package.

setup(
 ext_modules=cythonize("src/dataprep/cymean.pyx"),

Note

With extensionlib [https://github.com/ofek/extensionlib] there is a
toolkit for extension modules, which does not yet contain a hatchling
plugin.

Note

Alternatively, you could use Meson or
scikit-build:

Meson
[build-system]
requires = ["meson-python"]
build-backend = "mesonpy"

scikit-build
[build-system]
requires = ["scikit-build-core"]
build-backend = "scikit_build_core.build"

 Glossary

Glossary

	build
	build is a PEP 517 [https://peps.python.org/pep-0517/]-compatible Python package builder. It provides
a CLI for building packages and a Python API.

Docs [https://pypa-build.readthedocs.io/en/stable/index.html] |
GitHub [https://github.com/pypa/build] |
PyPI [https://pypi.org/project/build]

	built distribution
	bdist
	A structure of files and metadata that only needs to be moved to the
correct location on the target system during installation. wheel
is such a format, but not distutils Source Distribution that
require a build step.

	cibuildwheel
	cibuildwheel is a Python package that creates wheels for all common platforms and Python versions on most CI systems.

Docs [https://cibuildwheel.readthedocs.io/] |
GitHub [https://github.com/pypa/cibuildwheel] |
PyPI [https://pypi.org/project/cibuildwheel]

See also

multibuild

	conda
	Package management tool for the Anaconda [https://docs.continuum.io/anaconda/index.html] distribution from
Continuum Analytics [https://www.anaconda.com/]. It’s specifically
aimed at the scientific community, particularly Windows, where installing
binary extensions is often difficult.

Conda does not install packages from PyPI and can only install from the
official Continuum repositories or from anaconda.org [https://anaconda.org/] or local (e.g. intranet) package servers.
Note, however, that Pip can be installed in conda and can work side by
side to manage distributions of PyPI.

See also

	Conda: Myths and Misconceptions [https://jakevdp.github.io/blog/2016/08/25/conda-myths-and-misconceptions/]

	Conda build variants [https://docs.conda.io/projects/conda-build/en/latest/resources/variants.html]

	devpi
	devpi [https://devpi.net/] is a powerful PyPI compatible
server and PyPI proxy cache with a command line tool to enable packaging,
testing and publishing activities.

Docs [http://doc.devpi.net/latest/] |
GitHub [https://github.com/devpi/devpi] |
PyPI [https://pypi.org/project/devpi]

	distribution package
	A versioned archive file that contains Python packages, modules, and other resource files used to
distribute a release.

	distutils
	Python standard library package that provides support for bootstrapping
pip into an existing Python installation or virtual
environment.

Docs [https://docs.python.org/3/library/ensurepip.html] |
GitHub [https://github.com/pypa/distutils]

	egg
	A built distribution format introduced by setuptools
that is now being replaced by wheel. For more information, see
The Internal Structure of Python Eggs [https://setuptools.readthedocs.io/en/latest/deprecated/python_eggs.html]
and Python Eggs [http://peak.telecommunity.com/DevCenter/PythonEggs].

	enscons
	enscons is a Python packaging tool based on SCons [http://scons.org/].
It builds pip-compatible source distributions and wheels without using distutils
or setuptools, including distributions with C extensions. enscons
has a different architecture and philosophy than distutils, as it
adds Python packaging to a general build system. enscons can help you
build sdists and wheels.

GitHub [https://github.com/dholth/enscons] |
PyPI [https://pypi.org/project/enscons]

	Flit
	Flit provides an easy way to build pure Python packages and modules and
upload them to the Python Package Index. Flit can generate a
configuration file to quickly set up a project, create a source
distribution and wheel, and upload them to PyPI.

Flit uses pyproject.toml to configure a project. Flit does not
rely on tools like setuptools to create distributions, or on
twine to upload them to PyPI.

Docs [https://flit.readthedocs.io/en/latest/] |
GitHub [https://github.com/pypa/flit] |
PyPI [https://pypi.org/project/flit]

	Hatch
	Hatch is a command line tool that can be used to configure and version
packages and specify dependencies. The plugin system allows you to easily
extend the functionality.

Docs [https://hatch.pypa.io/latest/] |
GitHub [https://github.com/pypa/hatch] |
PyPI [https://pypi.org/project/hatch]

	hatchling
	Build backend of hatch, which can also be used to publish on the
Python Package Index.

	import package
	A Python module that can contain other modules or recursively other
packages.

	maturin
	Formerly pyo3-pack, is a PEP 621 [https://peps.python.org/pep-0621/]-compatible build tool for
binary extensions in Rust.

	meson-python
	Build backend that uses the Meson [https://mesonbuild.com] build
system. It supports a variety of languages, including C, and is able to
meet the requirements of most complex build configurations.

Docs [https://meson-python.readthedocs.io/en/latest/] |
GitHub [https://github.com/mesonbuild/meson-python] |
PyPI [https://pypi.org/project/meson-python/]

	module
	The basic unit of code reusability in Python, which exists in one of two
types:

	pure module
	A module written in Python contained in a single .py file (and
possibly associated .pyc- and/or .pyo files).

	extension module
	Usually a single dynamically loadable precompiled file, for example a
common object file (.so).

	multibuild
	multibuild is a set of CI scripts for building and testing Python
wheels for Linux, macOS and Windows.

See also

cibuildwheel

	pdm
	Python package manager with PEP 582 [https://peps.python.org/pep-0582/] support. It installs and manages
packages without the need to create a virtual environment. It
also uses pyproject.toml to store project metadata as defined in
PEP 621 [https://peps.python.org/pep-0621/].

Docs [https://pdm.fming.dev/] |
GitHub [https://github.com/pdm-project/pdm/] |
PyPI [https://pypi.org/project/pdm]

	pex
	Bibliothek und Werkzeug zur Erzeugung von Python EXecutable
(.pex)-Dateien, die eigenständige Python-Umgebungen sind.
.pex-Dateien sind Zip-Dateien mit #!/usr/bin/env python und einer
speziellen __main__.py-Datei, die das Deployment von
Python-Applikationen stark vereinfachen können.

Docs [https://pex.readthedocs.io/en/latest/] |
GitHub [https://github.com/pantsbuild/pex/] |
PyPI [https://pypi.org/project/pex]

	pip
	Popular tool for installing Python packages included in new versions of
Python.

It provides the essential core functions for searching, downloading and
installing packages from the Python Package Index and other
Python package directories, and can be integrated into a variety of
development workflows via a command line interface (CLI).

Docs [https://pip.pypa.io/] |
GitHub [https://github.com/pypa/pip] |
PyPI [https://pypi.org/project/pip/]

	pip-tools
	Set of tools that can keep your builds deterministic and still up to date
with new versions of your dependencies.

Docs [https://pip-tools.readthedocs.io/en/latest/] |
GitHub [https://github.com/jazzband/pip-tools/] |
PyPI [https://pypi.org/project/pip-tools/]

	Pipenv
	Pipenv bundles Pipfile, pip and virtualenv into a
single toolchain. It can automatically import the requirements.txt
and also check the environment for CVEs using safety [https://pyup.io/safety]. Finally, it also facilitates the
uninstallation of packages and their dependencies.

Docs [https://pipenv.pypa.io/en/latest/] |
GitHub [https://github.com/pypa/pipenv] |
PyPI [https://pypi.org/project/pipenv]

	Pipfile
	Pipfile.lock
	Pipfile and Pipfile.lock are a higher-level, application-oriented
alternative to pip’s requirements.txt file. The PEP 508
Environment Markers [https://peps.python.org/pep-0508/#environment-markers] are also supported.

Docs [https://pipenv.pypa.io/en/latest/pipfile/] |
GitHub [https://github.com/pypa/pipfile]

	pipx
	pipx helps you avoid dependency conflicts with other packages installed
on the system.

Docs [https://pypa.github.io/pipx/] |
GitHub [https://github.com/pypa/pipx] |
PyPI [https://pypi.org/project/pipx/]

	piwheels
	Website and underlying software that fetches source distribution
packages from PyPI and compiles them into binary wheels optimised for installation on Raspberry Pis.

Home [https://www.piwheels.org/] |
Docs [https://piwheels.readthedocs.io/en/latest/index.html] |
GitHub [https://github.com/piwheels/piwheels/]

	poetry
	An all-in-one solution for Python-only projects. It replaces
setuptools, venv/pipenv, pip,
wheel and twine. However, it makes some bad default
assumptions for libraries and the pyproject.toml configuration is
not standard compliant.

Docs [https://python-poetry.org/] |
GitHub [https://github.com/python-poetry/poetry] |
PyPI [https://pypi.org/project/poetry/]

	pybind11
	This is setuptools, but with a C++ extension and wheels
generated by cibuildwheel.

Docs [https://pybind11.readthedocs.io/en/stable/] |
GitHub [https://github.com/pybind/pybind11] |
PyPI [https://pypi.org/project/pybind11/]

	pypi.org
	pypi.org [https://pypi.org/] is the domain name for the Python
Package Index (PyPI). In 2017 it replaced the old index domain
name pypi.python.org. He is supported by warehouse.

	pyproject.toml
	Tool-independent file for the specification of projects defined in
PEP 518 [https://peps.python.org/pep-0518/].

Docs [https://pip.pypa.io/en/stable/reference/build-system/pyproject-toml/]

See also

	pyproject.toml

	Python Package Index
	PyPI
	pypi.org is the standard package index for the Python community.
All Python developers can use and distribute their distributions.

	Python Packaging Authority
	PyPA
	The Python Packaging Authority [https://www.pypa.io/en/latest/] is a
working group that manages several software projects for packaging,
distributing and installing Python libraries. However, the goals stated
in PyPA Goals [https://www.pypa.io/en/latest/future/] were created
during discussions around PEP 516 [https://peps.python.org/pep-0516/], PEP 517 [https://peps.python.org/pep-0517/] and PEP 518 [https://peps.python.org/pep-0518/], which
allowed competing workflows with the pyproject.toml-based build
system that do not need to be interoperable.

	readme_renderer
	readme_renderer is a library used to render documentation from markup
languages like Markdown or reStructuredText into HTML. You can use it to
check if your package descriptions are displayed correctly on
PyPI.

GitHub [https://github.com/pypa/readme_renderer/] |
PyPI [https://pypi.org/project/readme-renderer/]

	release
	The snapshot of a project at a specific point in time, identified by a
version identifier.

One release can result in several Built Distributions.

	scikit-build
	Build system generator for C-, C++-, Fortran- and Cython
extensions that integrates setuptools, wheel and
pip. It uses CMake internally to provide better support for
additional compilers, build systems, cross-compilation and finding
dependencies and their associated build requirements. To speed up and
parallelise the creation of large parallelisation, Ninja can also be
installed. can be installed.

Docs [https://scikit-build.readthedocs.io/en/latest/] |
GitHub [https://github.com/scikit-build/scikit-build/] |
PyPI [https://pypi.org/project/scikit-build]

	setuptools
	setuptools are the classic build system, which is very powerful, but with
a steep learning curve and high configuration effort. From version 61.0.0
setuptools also support pyproject.toml files.

Docs [https://setuptools.readthedocs.io/en/latest/] |
GitHub [https://github.com/pypa/setuptools] |
PyPI [https://pypi.org/project/setuptools]

See also

Packaging and distributing projects [https://packaging.python.org/guides/distributing-packages-using-setuptools/]

	shiv
	Command line utility for building Python zip apps as described in
PEP 441 [https://peps.python.org/pep-0441/], but additionally with all dependencies.

Docs [https://shiv.readthedocs.io/en/latest/] |
GitHub [https://github.com/linkedin/shiv] |
PyPI [https://pypi.org/project/shiv/]

	source distribution
	sdist
	A distribution format (typically generated using) python setup.py
sdist.

It provides metadata and the essential source files required for
installation with a tool like Pip or for generating built
distributions.

	Spack
	Flexible package manager that supports multiple versions, configurations,
platforms and compilers. Any number of versions of packages can co-exist
on the same system. Spack is designed for rapid creation of
high-performance scientific applications on clusters and supercomputers.

Docs [https://spack.readthedocs.io/en/latest/index.html] |
GitHub [https://github.com/spack/spack]

See also

	Spack [https://www.python4data.science/en/latest/productive/envs/spack/index.html]

	trove-classifiers
	trove-classifiers are classifiers used in the Python Package
Index to systematically describe projects and make them easier to find.
On the other hand, they are a package that contains a list of valid and
obsolete classifiers that can be used for verification.

Docs [https://pypi.org/classifiers/] |
GitHub [https://github.com/pypa/trove-classifiers] |
PyPI [https://pypi.org/project/trove-classifiers/]

	twine
	Command line programme that passes programme files and metadata to a web
API. This allows Python packages to be uploaded to the Python
Package Index.

Docs [https://twine.readthedocs.io/en/latest/] |
GitHub [https://github.com/pypa/twine] |
PyPI [https://pypi.org/project/twine]

	venv
	Package that is in the Python standard library as of Python ≥ 3.3 and is
intended for creating virtual environments.

Docs [https://docs.python.org/3/library/venv.html] |
GitHub [https://github.com/python/cpython/tree/main/Lib/venv]

	virtualenv
	Tool that uses the path command line environment variable to create
isolated Python virtual environments,
similar to venv, but provides additional functionality for
configuration, maintenance, duplication and debugging.

As of version 20.22.0, virtualenv no longer supports Python versions 2.7,
3.5 and 3.6.

	Virtual environment
	An isolated Python environment that allows packages to be installed for a
specific application rather than system-wide.

See also

	Virtual environments

	Creating Virtual Environments [https://packaging.python.org/tutorials/installing-packages/#creating-and-using-virtual-environments]

	Warehouse
	The current code base that powers the Python Package Index
(PyPI). It is hosted on pypi.org.

Docs [https://warehouse.pypa.io/] |
GitHub [https://github.com/pypa/warehouse]

	wheel
	Distribution format introduced with PEP 427 [https://peps.python.org/pep-0427/]. It is intended to replace
the Egg format and is supported by current pip
installations.

C extensions can be provided as platform-specific wheels for Windows,
macOS and Linux on PyPI. This has the advantage for the users of
the package that they don’t have to compile during the installation.

Home [https://pythonwheels.com/] |
Docs [https://wheel.readthedocs.io/] |
PEP 427 [https://peps.python.org/pep-0427/] |
GitHub [https://github.com/pypa/wheel] |
PyPI [https://pypi.org/project/wheel/] |

See also

	wheels

	whey
	Simple Python wheel builder with automation options for
trove-classifiers.

 Object Orientation

Object Orientation

Python offers full support for object-oriented programming [https://en.wikipedia.org/wiki/Object-oriented_programming] OOP. The following listing is an example that could
be the beginning of a simple shapes module for a drawing program.

 Classes

Classes

A class in Python [https://docs.python.org/3/tutorial/classes.html] is actually a data type. All
of Python’s built-in data types are classes, and Python provides you with
powerful tools to manipulate every aspect of a class’s behaviour. You can define
a class with the class statement:

>>> class MyClass:
... STATEMENTS

	MyClass
	Class identifiers are usually written in capital letters, that mean the
first letter of each word is capitalised to emphasise the identifiers.

	STATEMENTS
	is a list of Python statements – usually variable assignments and function
definitions. However, no assignments or function definitions are required;
it can just be a single pass statement.

After you have defined the class, you can create a new object of the class type
(an instance of the class) by calling the class name as a function:

>>> instance = MyClass()

Class instances can be used as structures or data sets. However, unlike C
structures or Java classes, the data fields of an instance do not have to be
declared in advance. The following short example defines a class called
Square, creates a Square instance, assigns a value to the edge length
and then uses this value to calculate the total edge length:

>>> my_square = Square()
>>> my_square.length = 3
>>> print(f"The perimeter of the square is {4 * my_square.length}.")
The perimeter of the square is 12.

As in Java and many other languages, the fields of an instance are addressed
using dot notation.

You can initialise fields of an instance automatically by including an
__init__ initialisation method in the class. This function is executed each
time an instance of the class is created with this new instance as the first
argument self. Unlike in Java and C++, Python classes can also have only one
__init__ method. In the following example, squares with an edge length of
1 are created by default:

1>>> class Square:
2... def __init__(self):
3... self.length = 1
4...
5>>> my_square = Square()
6>>> print(f"The perimeter of the square is {4 * my_square.length}.")
7The perimeter of the square is 4.

	Line 2
	By convention, self is always the name of the first argument of
__init__. self is set to the newly created Square instance when
__init__ is executed.

	Line 5
	Next, the code uses the class definition. You first create a Square
instance object.

	Line 6
	This line takes advantage of the fact that the length field is already
initialised.

You can also overwrite the length field so that the last line gives a
different result than the previous print statement:

>>> my_square.length = 3
>>> print(f"The perimeter of the square is {4 * my_square.length}.")
The perimeter of the square is 12.

 Variables

Variables

Instance variables

In the previous example, length is an instance variable of Square
instances, which means that each instance of the class Square has its own
copy of length, and the value stored in this copy may be different from the
values stored in the length variable in other instances. In Python, you can
create instance variables as needed by assigning them to the field of a class
instance. If the variable does not already exist, it will be created
automatically.

All uses of instance variables, both assignment and access, require explicit
mention of the instance they contain, that is, instance.variable. A
reference to a variable in itself is not a reference to an instance variable,
but to a local variable in the executing method. This is different from C++ and
Java, where instance variables are referenced in the same way as local function
variables of the method. Python requires explicit mention of the contained
instance here, and this enables a clear distinction between instance variables
and local function variables.

Class variables

A class variable is a variable associated with a class, not an instance of a
class, that can be accessed by all instances of the class. A class variable can
be used to store some class-level information, such as how many instances of the
class were created at a particular time. Python provides class variables,
although using them requires a little more effort than in most other languages.
You also need to be aware of an interaction between class and instance
variables.

A class variable is created by an assignment in the class, but outside the
__init__ function. After it is created, it can be seen by all instances of
the class. You can use a class variable to make a value for pi accessible to
all instances of the Circle class:

>>> class Circle:
... pi = 3.14159
... def __init__(self, diameter):
... self.diameter = diameter
... def circumference(self):
... return self.diameter * Circle.pi

Once you have entered this definition, you can query pi with:

>>> Circle.pi
3.14159

Note

The class variable is linked to and contained within the class that defines
it. You access Circle.pi in this example before any Circle instances
have been created. It is obvious that Circle.pi exists independently of
specific instances of the Circle class.

You can also access a class variable from a method of a class using the class
name. You do this in the definition of Circle.circumference, where the
circumference function contains a special reference to Circle.pi:

>>> c = Circle(3)
>>> c.circumference()
9.424769999999999

However, it is unpleasant that the class name Circle is used in the
circumference method to address the class variable pi. You can avoid
this by using the special __class__ attribute, which is available for all
Python class instances. This attribute returns the class to which the instance
belongs, for example:

>>> Circle
<class '__main__.Circle'>
>>> c.__class__
<class '__main__.Circle'>

The Circle class is internally represented by an abstract data structure,
and this data structure is exactly what is obtained by the __class__
attribute of c, an instance of the Circle class. In this example, you
can retrieve the value of Circle.pi from c without explicitly referring
to the name of the Circle class:

>>> c.__class__.pi
3.14159

You can use this code internally in the circumference method to get rid of
the explicit reference to the Circle class; replace Circle.pi with
self.__class__.pi.

There is a little oddity about class variables that might confuse you if you are
not aware of it.

Warning

If Python searches for an instance variable and does not find an instance
variable with that name, it will search for and return the value in a class
variable with the same name. Only if no matching class variable can be found
does Python return an error. This can be used to efficiently implement
default values for instance variables; however, this also easily leads to
accidentally referring to an instance variable instead of a class variable
without an error being reported.

First, you can refer to the variable c.pi, even though c has no
associated instance variable called pi. Python first tries to find such
an instance variable and only when it cannot find an instance variable does
it look for a class variable pi in Circle:

>>> c1 = Circle(1)
>>> c1.pi
3.14159

If you now find that your specification for pi has been rounded too
early and you want to replace it with a more precise specification, you
might be inclined to change it as follows:

>>> c1.pi = 3.141592653589793
>>> c1.pi
3.141592653589793

However, you have now only added a new instance variable pi to c1.
The class variable Circle.pi and all other instances derived from it
still have only five decimal places:

>>> Circle.pi
3.14159
>>> c2 = Circle(2)
>>> c1.pi
3.14159

 Methods

Methods

A method is a function associated with a particular class. You have already seen
the special __init__ method that is called when a new instance is created.
In the following example, you define another method, circumference, for the
class Square; this method can be used to calculate and return the
circumference for any Square instance. Like most custom methods,
circumference is called with a syntax similar to accessing instance
variables:

>>> class Square:
... def __init__(self):
... self.length = 1
... def circumference(self):
... return 4 * self.length
...
>>> s = Square()
>>> s.length = 5
>>> print(s.circumference())
20

The syntax for method calls consists of an instance followed by a dot followed
by the method to be called on the instance. If a method is called in this way,
it is a bound method call. However, a method can also be called as an unbound
method by accessing it through its containing class. This practice is less
practical and is almost never used because the first argument of a method called
in this way must be an instance of the class in which the method is defined and
is less clear:

>>> print(Square.circumference(s))
20

Like __init__, the circumference method is defined as a function within
the class. The first argument of each method is the instance from which or on
which it was called, by convention called self. In many languages, the
instance is called this and is never explicitly passed.

Methods can be called with arguments if the method definitions accept those
arguments. This version of Square adds an argument to the __init__
method so that you can create squares with a specific edge length without having
to set the edge length after creating a square:

>>> class Square:
... def __init__(self, length):
... self.length = length
... def circumference(self):
... return 4 * self.length

Warning

self.length and length are not the same!

	self.length is the instance variable called length

	length is the local function parameter

In practice, you would probably refer to the local function parameter as
lng or l to avoid confusion.

With this definition of Square, you can create squares with arbitrary edge
lengths with a call to the Square class. In the following, a square with
edge length 3 is created:

s = Square(3)

All of Python’s standard functions – standard arguments, additional arguments,
keyword arguments, etc. – can be used with methods. You
could have defined the first line of __init__ as follows:

... def __init__(self, length=1):

Then the call to Square would work with or without an additional argument;
Square() would return a square with edge length 1 and Square(3)
would return a square with edge length 3.

For a method call instance.method(arg1, arg2, …), Python converts it to a
normal function call by applying the following rules:

	Search for the method name in the instance namespace. If a method has been
changed or added for this instance, it is called in preference to methods in
the class.

	If the method is not found in the instance namespace, the method is searched
in the class. In the previous examples, class is the Square type of
the instance s.

	If the method is still not found, it is searched for in a superclass, see
also Inheritance.

	If the method is found, it is called as a normal Python function, using
instance as the first argument of the function and shifting all other
arguments in the method call one space to the right. Thus
instance.method(arg1, arg2, …) becomes
class.method(instance, arg1, arg2, …).

Static methods

Just like in Java, you can call static methods even if no instance of that class
has been created. To create a static method, use the @staticmethod [https://docs.python.org/3/library/functions.html#staticmethod] decorator:

 1"""circle module: contains the 'Circle' class"""
 2
 3
 4class Circle:
 5 """Circle class.
 6
 7 The class variable 'circles' contains a list of all circle instances.
 8
 9 """
10
11 circles = []
12 pi = 3.14159
13
14 def __init__(self, diameter=1):
15 """Create a Circle instance with a given diameter and add an initialised
16 circle to the circles list."""
17 self.diameter = diameter
18 self.__class__.circles.append(self)
19
20 def circumference(self):
21 return self.diameter * self.__class__.pi
22
23 @staticmethod
24 def circumferences():
25 """Static method to sum all circle circumferences."""
26 csum = 0
27 for c in Circle.circles:
28 csum = csum + c.circumference()
29 return csum

	Line 11
	defines the class variable circles as an initially empty list of all
Circle instances.

	Line 14
	adds initialised Circle instances to the circles list.

>>> import circle
>>> c1 = circle.Circle(1)
>>> c2 = circle.Circle(2)
>>> circle.Circle.circumferences()
9.424769999999999
>>> c2.diameter = 3
>>> circle.Circle.circumferences()
12.56636

Class methods

Class methods [https://docs.python.org/3/library/functions.html#classmethod] are similar to static methods in that they
can be called before an object of the class has been instantiated. However, the
class to which they belong is implicitly passed to the class methods as the
first parameter:

23 @classmethod
24 def circumferences(cls):
25 """Class method to sum all circle circumferences."""
26 csum = 0
27 for c in cls.circles:
28 csum = csum + c.circumference()
29 return csum

	Line 23
	The @classmethod decorator is used before the def method.

	Line 24
	The class parameter is traditionally cls.

	Line 27
	You can use cls instead of self.__class__.

By using a class method instead of a static method, you don’t have to
hardcode the class name in circumferences.

>>> import circle_cm
>>> c1 = circle_cm.Circle(1)
>>> c2 = circle_cm.Circle(2)
>>> circle_cm.Circle.circumferences()
9.424769999999999

 Inheritance

Inheritance

Inheritance in Python is simpler and more flexible than inheritance in compiled
languages such as Java and C++ because the dynamic nature of Python does not
impose as many restrictions on the language.

To see how inheritance is used in Python, let’s start with the Square and
Circle classes we discussed earlier and generalise them.

If we now want to use these classes in a drawing program, we need to define
where on the drawing surface an instance should be located. We can do this by
defining x and y coordinates for each instance:

 1>>> class Square:
 2... def __init__(self, length=1, x=0, y=0):
 3... self.length = length
 4... self.x = x
 5... self.y = y
 6...
 7>>> class Circle:
 8... def __init__(self, diameter=1, x=0, y=0):
 9... self.diameter = diameter
10... self.x = x
11... self.y = y

This approach works, but leads to a lot of repetitive code when you increase the
number of shape classes, as you probably want every shape to have this
positional information. This is a standard situation for using inheritance in
object-oriented languages. Instead of defining the x and y variables in
each shape class, you can abstract them into a general shape class and have each
class that defines a particular shape inherit from that general class. In
Python, this technique looks like this:

 1>>> class Form:
 2... def __init__(self, x=0, y=0):
 3... self.x = x
 4... self.y = y
 5...
 6>>> class Square(Form):
 7... def __init__(self, length=1, x=0, y=0):
 8... super().__init__(x, y)
 9... self.length = length
10...
11>>> class Circle(Form):
12... def __init__(self, diameter=1, x=0, y=0):
13... super().__init__(x, y)
14... self.diameter = diameter

	Lines 6 and 11
	Square and Circle inherit from the Form class.

	Lines 8 and 13
	call the __init__ method of the Form class.

There are generally two requirements when using an inherited class in Python,
both of which you can see in the code of the Circle and Square classes:

	The first requirement is to define the inheritance hierarchy, which you do by
specifying the classes that are inherited from in parentheses immediately
after the name of the class, which is defined with the class keyword:
Circle and Square both inherit from Form.

	The second element is the explicit call to the __init__ method of the
inherited class. This is not done automatically in Python, but mostly through
the super function, more precisely through the lines
super().__init__(x,y). This code calls the initialisation function of
Form with the instance to be initialised and the corresponding arguments.
Otherwise, the instance variables x and y would not be set for the
instances of Circle and Square.

Inheritance also comes into play when you try to use a method that is not
defined in the base classes but in the superclass. To see this effect, define
another method in the Form class called move that moves a shape in the
x and y coordinates. The definition for Form is now:

1>>> class Form:
2... def __init__(self, x=0, y=0):
3... self.x = x
4... self.y = y
5... def move(self, delta_x, delta_y):
6... self.x = self.x + delta_x
7... self.y = self.y + delta_y

If you take the parameters delta_x and delta_y of the method move in
the __init__ methods of Circle and Square, you can for example
execute the following interactive session:

>>> c = Circle(3)
>>> c.move(4, 5)
>>> c.x
4
>>> c.y
5

The class Circle in the example does not have a move method defined
directly in itself, but since it inherits from a class that implements move,
all instances of Circle can use the move method. In OOP terms, one could
say that all Python methods are virtual – that is if a method does not exist in
the current class, the list of superclasses is searched for the method and the
first one found is used.

 Summary

Summary

The points made so far, are the basics of using classes and objects in Python. I
will now summarise these basics in a single example:

	First, we create a base class:

 4class Form:
 5 """Form class: has method move"""
 6
 7 def __init__(self, x, y):
 8 self.x = x
 9 self.y = y
10
11 def move(self, deltaX, deltaY):
12 self.x = self.x + deltaX
13 self.y = self.y + deltaY

	Line 7
	The __init__ method requires one instance (self) and two
parameters.

	Lines 8 and 9
	The two instance variables x and y, which are accessed via
self.

	Line 11
	The move method requires one instance (self) and two parameters.

	Lines 12 and 13
	Instance variables that are set in the move method.

	Next, create a subclass that inherits from the base class Form:

16class Square(Form):
17 """Square Class:inherits from Form"""
18
19 def __init__(self, length=1, x=0, y=0):
20 super().__init__(x, y)
21 self.length = length

	Line 16
	The class Square inherits from the class Form.

	Line 19
	Square’s __init__ takes one instance (self) and three
parameters, all with defaults.

	Line 20
	Circle’s __init__ uses super() to call Form’s
__init__.

	Finally, we create another subclass that also contains a static method:

27class Circle(Form):
28 """Circle Class: inherits from Form and has method area"""
29
30 circles = []
31 pi = 3.14159
32
33 def __init__(self, diameter=1, x=0, y=0):
34 super().__init__(x, y)
35 self.diameter = diameter
36 self.__class__.circles.append(self)
37
38 def circumference(self):
39 return self.diameter * self.__class__.pi
40
41 @classmethod
42 def circumferences(cls):
43 """Class method to sum all circle circumferences."""
44 csum = 0
45 for c in cls.circles:
46 csum = csum + c.circumference()
47 return csum

	Lines 30 and 31
	pi and circles are class variables for Circle.

	Line 33
	In the __init__ method, the instance inserts itself into the
circles list.

	Lines 38 and 39
	circumferences is a class method and takes the class itself
(cls) as a parameter.

	Line 42
	uses the parameter cls to access the class variable circles.

Now you can create some instances of the class Circle and analyse them.
Since the __init__ method of Circle has default parameters, you can
create a circle without specifying any parameters:

>>> import form
>>> c1 = form.Circle()
>>> c1.diameter, c1.x, c1.y
(1, 0, 0)

If you specify parameters, they are used to set the values of the instance:

>>> c2 = form.Circle(2, 3, 4)
>>> c2.diameter, c2.x, c2.y
(2, 3, 4)

When you call the move() method, Python does not find a move() method in
the Circle class, so it goes up the inheritance hierarchy and uses the
move() method of Form:

>>> c2.move(5, 6)
>>> c2.diameter, c2.x, c2.y
(2, 8, 10)

You can also call the class method circumferences() of the class Circle,
either through the class itself or through an instance:

>>> form.Circle.circumferences()
9.424769999999999
>>> c2.circumferences()
9.424769999999999

 Private variables and methods

Private variables and methods

A private variable or private method is a variable that is not visible outside
the methods of the class in which it is defined. Private variables and methods
are useful for two reasons:

	they increase security and reliability by selectively denying access to
important parts of an object’s implementation

	they prevent naming conflicts that can arise from the use of inheritance.

A class can define a private variable and inherit it from a class that defines a
private variable with the same name. Private variables make code easier to read
because they explicitly state what is only used internally in a class.
Everything else is the interface of the class.

Most languages that define private variables do so by using the keyword
private or similar. The convention in Python is simpler and also makes it
easier to see immediately what is private and what is not. Any method or
instance variable whose name begins with a double underscore (__) but does
not end is private; anything else is not.

As an example, consider the following class definition:

>>> class MyClass:
... def __init__(self):
... self.x = 1
... self.__y = 2
... def print_y(self):
... print(self.__y)
...
>>> m = MyClass()
>>> print(m.x)
1
>>> print(m.__y)
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
AttributeError: 'MyClass' object has no attribute '__y'

The print_y method is not private, and since it is in the MyClass class,
it can access and output __y:

>>> m.print_y()
2

Note

The mechanism used to ensure privacy falsifies the name of private variables
and private methods when the code is compiled into bytecode. Specifically,
this means that _classname is prefixed to the variable name:

>>> dir(m)
['_MyClass__y', '__class__', …]

So this is only to prevent accidental access.

 @property decorator

@property decorator

In Python, you can access instance variables directly, without additional getter
and setter methods that are often used in Java and other object-oriented
languages. This makes writing Python classes cleaner and easier, but in some
situations using getter and setter methods can also be useful. Let’s say you
need a value before setting it in an instance variable, or you just want to find
out the value of an attribute. In both cases, getter and setter methods would do
the job, but at the cost of losing easy access to instance variables in Python.

The answer is to use a property. This combines the ability to pass access to
an instance variable via methods such as getters and setters with simple access
to instance variables via dot notation. To create a property, the
property [https://docs.python.org/3/library/functions.html#property] decorator is used with a method that has the name of
the property:

23 @property
24 def length(self):
25 return self.__length

Without a setter, however, the property length is read-only:

>>> s1 = form.Square()
>>> s1.length = 2
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
AttributeError: can't set attribute

To change this, you need to add a setter:

27 @length.setter
28 def length(self, new_length):
29 self.__length = new_length

Now you can use the dot notation to both get and set the property length.
Note that the name of the method remains the same, but the decorator changes to
the property name, in our case to length.setter:

>>> s1 = form.Square()
>>> s1.length = 2
>>> s1.circumference()
8

A big advantage of Python’s ability to add properties is that you can work with
plain old instance variables at the beginning of development and then seamlessly
switch to property variables whenever and wherever you need to, without
changing the client code. The access is still the same, using dot notation.

 Namespaces

Namespaces

If you are in the method of a class, you have direct access

	to the local namespace with the parameters and variables declared in this
method,

	the global namespace with functions and variables declared at module
level, and

	the built-in namespace with the built-in functions and built-in
exceptions.

These three namespaces are searched in this order.

To explain the different namespaces in more detail in our example, we have
extended our existing module to make it clear what can be accessed within a
method: form_ns.py.

You can get an overview of the methods that are available in a namespace with

65 def namespaces(self):
66 print("Global namespace:", list(globals().keys()))
67 print("Superclass namespace:", dir(Form))
68 print("Class namespace:", dir(Circle))
69 print("Instance namespace:", dir(self))
70 print("Local namespace:", list(locals().keys()))

>>> import form_ns
>>> c1 = form_ns.Circle()
>>> c1.namespaces()
Global namespace: ['__name__', '__doc__', '__package__', '__loader__', '__spec__', '__file__', '__cached__', '__builtins__', 'Form', 'Square', 'Circle']
Superclass namespace: ['__class__', '__delattr__', '__dict__', '__dir__', '__doc__', '__eq__', '__format__', '__ge__', '__getattribute__', '__gt__', '__hash__', '__init__', '__init_subclass__', '__le__', '__lt__', '__module__', '__ne__', '__new__', '__reduce__', '__reduce_ex__', '__repr__', '__setattr__', '__sizeof__', '__str__', '__subclasshook__', '__weakref__', 'move']
Class namespace: ['__class__', '__delattr__', '__dict__', '__dir__', '__doc__', '__eq__', '__format__', '__ge__', '__getattribute__', '__gt__', '__hash__', '__init__', '__init_subclass__', '__le__', '__lt__', '__module__', '__ne__', '__new__', '__reduce__', '__reduce_ex__', '__repr__', '__setattr__', '__sizeof__', '__str__', '__subclasshook__', '__weakref__', 'circles', 'circumference', 'circumferences', 'diameter', 'instance_variables', 'move', 'namespaces', 'pi']
Instance namespace: ['_Circle__diameter', '__class__', '__delattr__', '__dict__', '__dir__', '__doc__', '__eq__', '__format__', '__ge__', '__getattribute__', '__gt__', '__hash__', '__init__', '__init_subclass__', '__le__', '__lt__', '__module__', '__ne__', '__new__', '__reduce__', '__reduce_ex__', '__repr__', '__setattr__', '__sizeof__', '__str__', '__subclasshook__', '__weakref__', 'circles', 'circumference', 'circumferences', 'diameter', 'instance_variables', 'move', 'namespaces', 'pi', 'x', 'y']
Local namespace: ['self']

Via the self variable you also have access to

	the namespace of the instance with

	instance variables

	private instance variables and

	instance variables of the superclass,

	the namespace of the class with

	methods,

	class variables,

	private methods and

	private class variables and

	the namespace of the superclass with

	methods of the superclass and

	class variables of the superclass.

These three namespaces are also searched in this order.

You can now analyse the namespace of the instance with the method
instance_variables, for example:

72 def instance_variables(self):
73 print(
74 "Instance variables self.__diameter, self.x, self.y:",
75 self.__diameter,
76 self.x,
77 self.y,
78)

>>> import form_ns
>>> c1 = form_ns.Circle()
>>> c1.instance_variables()
Instance variables self.__diameter, self.x, self.y: 1 0 0

Note

While you can access the move method of the superclass form with
self, private instance variables, private methods and private class
variables of the superclass are not accessible in this way.

If you only want to change instances of a certain class, you can do this with
the garbage collector [https://docs.python.org/3/library/gc.html#module-gc], for example:

>>> import forms
>>> c1 = forms.Circle()
>>> c2 = forms.Circle(2, 3, 4)
>>> s1 = forms.Square(5, 6, 7)
>>> import gc
>>> for obj in gc.get_objects():
... if isinstance(obj, forms.Circle):
... obj.move(3, 0)
...
>>> c1.x, c1.y
(3, 0)
>>> c2.x, c2.y
(6, 4)
>>> s1.x, s1.y
(6, 7)

 Data types as objects

Data types as objects

By now you have learned the basic Python data types and
know how to create your own data types using Classes. Note that Python is
dynamically typed, which means that the types are determined at runtime, not
compile time. This is one of the reasons why Python is so easy to use. You can
simply try the following:

>>> type(3)
<class 'int'>
>>> type('Hello')
<class 'str'>
>>> type(['Hello', 'Pythonistas'])
<class 'list'>

In these examples you can see the built-in type [https://docs.python.org/3/library/functions.html#type] function in Python. It
can be applied to any Python object and returns the type of the object. In this
example, the function tells you that 3 is an int (integer), that
'Hello' is a str (string) and that ['Hello', 'Pythonistas'] is a
list.

Of greater interest, however, may be the fact that Python returns objects in
response to calls to type [https://docs.python.org/3/library/functions.html#type]; <<class 'int'>, <<class 'str'> and
<<class 'list'> are the screen representations of the returned objects. So
you can compare these Python objects with each other:

>>> type('Hello') == type('Pythonistas!')
True
>>> type('Hello') == type('Pythonistas!') == type(['Hello', 'Pythonistas'])
False

With this technique you can, among other things, perform a type check in your
function and method definitions. However, the most common question about the
types of objects is whether a particular object is an instance of a class. An
example with a simple inheritance hierarchy makes this clearer:

	First, we define two classes with an inheritance hierarchy:

>>> class Form:
... pass
...
>>> class Square(Form):
... pass
...
>>> class Circle(Form):
... pass

	Now you can create an instance c1 of the class Circle:

>>> c1 = Circle()

	As expected, the type function on c1 outputs that c1 is an
instance of the class Circle defined in your current __main__
namespace:

>>> type(c1)
<class '__main__.Circle'>

	You can also get exactly the same information by accessing the __class__
attribute of the instance:

>>> c1.__class__
<class '__main__.Circle'>

	You can also explicitly check whether the two class objects are identical:

>>> c1.__class__ == Circle
True

	However, two built-in functions provide a more user-friendly way of obtaining
most of the information normally required:

	isinstance() [https://docs.python.org/3/library/functions.html#isinstance]
	determines whether, for example, a class passed to a function or method
is of the expected type.

	issubclass() [https://docs.python.org/3/library/functions.html#issubclass]
	
determines whether one class is the subclass of another.

>>> issubclass(Circle, Form)
True
>>> issubclass(Square, Form)
True
>>> isinstance(c1, Form)
True
>>> isinstance(c1, Square)
False
>>> isinstance(c1, Circle)
True
>>> issubclass(c1.__class__, Form)
True
>>> issubclass(c1.__class__, Square)
False
>>> issubclass(c1.__class__, Circle)
True

Duck typing

The use of type [https://docs.python.org/3/library/functions.html#type], isinstance() [https://docs.python.org/3/library/functions.html#isinstance] and
issubclass() [https://docs.python.org/3/library/functions.html#issubclass] makes it fairly easy to correctly determine the
inheritance hierarchy of an object or class. However, Python also has a feature
that makes using objects even easier: duck typing – „If it walks like a duck
and it quacks like a duck, then it must be a duck“. This refers to Python’s way
of determining whether an object is the required type for an operation, focusing
on the interface of an object. In short, in Python you don’t have to worry about
type-checking function or method arguments and the like, but instead rely on
readable and documented code in conjunction with tests to ensure that an object
„quacks like a duck when needed.“

Duck typing can increase the flexibility of well-written code and, in
combination with advanced object-oriented functions, gives you the ability to
create classes and objects that cover almost any situation. Such special
methods [https://docs.python.org/3/reference/datamodel.html#specialnames] are attributes of a class with special meaning
for Python. While they are defined as methods, they are not intended to be
called directly; instead, they are called automatically by Python in response to
a request to an object of that class.

One of the simplest examples of a special method is object.__str__() [https://docs.python.org/3/reference/datamodel.html#object.__str__]. When
defined in a class, the __str__ method attribute is called whenever an
instance of that class is used and Python requires a user-readable string
representation of that instance. To see this attribute in action, we again use
our Form class with the standard __init__ method to initialise instances
of the class, but also a __str__ method to return strings representing
instances in a readable format:

>>> class Form:
... def __init__(self, x, y):
... self.x = x
... self.y = y
... def __str__(self):
... return "Position: x={0}, y={1}".format (self.x, self.y)
...
>>> f = Form(2,3)
>>> print(f)
Position: x=2, y=3

Even though our special __str__ method attribute was not explicitly called
by our code, it could still be used by Python because Python knows that the
__str__ attribute, if present, defines a method for converting objects into
user-readable strings. And this is exactly what distinguishes the special method
attributes. For example, it is often a good idea to define the __str__
attribute for a class so that you can call print(instance) in debugging code
and get an informative statement about your object.

Conversely, however, it may be surprising that an object type reacts differently
to special method attributes. Therefore, I usually use special method attributes
only in one of the following two cases:

	in a commonly used class, usually for sequences, that behaves similarly to a
Python built-in type, and which is made more useful by special method
attributes.

	in a class that behaves almost identically to a built-in class, for example
lists implemented as balanced trees to speed up insertion, I can define the
special method attributes.

 Save and access data

Save and access data

To store data persistently, a process called serialisation or marshalling can be
used. In it, data structures are converted into a linear form and stored. The
reverse process is then called deserialisation or unmarshalling. Python offers
several modules in the standard library that you can be used to serialise and
deserialise objects:

	the marshal [https://docs.python.org/3/library/marshal.html] module
	is mainly used internally by Python and should not be used to store data in
a backwards compatible way.

	the pickle module
	if you don’t need a readable format or interoperability.

	the json [https://docs.python.org/3/library/json.html] module
	you can use to exchange data for different languages in a readable form.

	the xml module
	you can also use to exchange data in different languages in a readable form.

The Python Database API

The Python Database API defines a
standard interface for Python database access modules. It’s defined in
PEP 249 [https://peps.python.org/pep-0249/] and widely used, for example by sqlite,
psycopg, and mysql-python [https://sourceforge.net/projects/mysql-python/].

SQLAlchemy

SQLAlchemy [https://www.python4data.science/en/latest/data-processing/postgresql/sqlalchemy.html] is a widely used
database toolkit. It provides not only an ORM
but also a generalised API for writing database-agnostic code without SQL.
Alembic [https://www.python4data.science/en/latest/data-processing/postgresql/alembic.html] is based on
SQLAlchemy and serves as a database migration tool.

NoSQL databases

There is data that is difficult to transfer into a relational data model. At the
least then you should take a look at
NoSQL databases [https://www.python4data.science/en/latest/data-processing/nosql/index.html].

 File system

File system

To work with files, you often have to interact with the file system and the
different conventions depending on the operating system. For this I show you
os [https://docs.python.org/3/library/os.html] and especially os.path [https://docs.python.org/3/library/os.path.html].

Paths and path names

All operating systems refer to files with strings called pathnames. Python
provides a number of functions to help you solve some problems. The semantics of
pathnames are very similar on all operating systems because the file system is
usually modelled as a tree structure, with a hard disk representing the root and
folders, subfolders, etc. representing the branches and
subbranches; this means that most operating systems refer to a particular file
in a very similar way.

However, different operating systems have different conventions for path names.
The character used to separate consecutive file or directory names in a
Linux/macOS pathname is /, while in a Windows pathname it is \. Also,
the Linux file system has a single root directory referred to by a /
character as the first character in the path name, while the Windows file system
has a separate root directory for each drive, referred to as {C:}, and
so on. Because of these differences, files have different path names on
different operating systems. A file named C:\DATA\MYFILE on Windows
could be /DATA/MYFILE on Linux and macOS. Python provides functions
and constants that allow you to perform common pathname manipulations without
having to worry about such syntactical details. With a little care, you can
write your Python programs to run correctly regardless of the underlying file
system.

Absolute and relative paths

These operating systems allow two types of path names:

	Absolute path names
	uniquely indicate the exact position of a file in the file system by listing
the entire path to that file, starting with the root directory of the file
system.

Two absolute Windows path names are given here as examples:

C:\Program Files\Python 3.9\
D:\backup\2022\06\

And here are two absolute Linux path names and one absolute macOS path name:

/bin/python3
/cdrom/backup/2022/06/
/Applications/Python\ 3.10/

	Relative pathnames
	indicate the position of a file relative to another point in the file
system, and this other point is not indicated in the relative path name
itself.

As example, a Windows relative pathname is given here:

save-data\filesystem.rst

… and here a relative Linux/macOS pathname:

save-data/filesystem.rst

Relative paths therefore require a context in which they are anchored. This
context is usually provided in one of two ways:

	The relative path is appended to an existing absolute path, creating a new
absolute path. If you have a Windows relative path
Start Menu\Programs\Python 3.8 and an absolute path
C:\Users\Veit, then by appending the relative path a new
absolute path: C:\Users\Veit\Start Menu\Programs\Python 3.8
can be created. If you append the same relative path to another absolute
path (for example to C:\Users\Tim, you will get a new path
referring to another HOME directory (Tim).

	Relative paths can also be given a context by implicitly referring to the
current working directory, that is the directory in which a Python
programme is located at the time it is executed. Python commands can
implicitly refer back to the current working directory if a relative path
is passed to them as an argument. For example, if you use the
os.listdir('RELATIVE/PATH') command with a relative path
argument, the anchor for that relative path is the current working
directory, and the result of the command is a list of the filenames in the
directory whose path is formed by appending the current working directory
to the relative path argument.

The directory in which a Python file is located is called the current
working directory. This directory will usually be different from the
directory where the Python interpreter is located. To illustrate this,
let’s start Python and use the command os.getcwd() [https://docs.python.org/3/library/os.html#os.getcwd] to find
out the current working directory of Python:

>>> import os
>>> os.getcwd()
'/home/veit'

Note

os.getcwd() is used as a function call without arguments to make it
clear that the returned value is not a constant, but changes when you
change the value of the current working directory. In the example
above, the result is the home directory on one of my Linux machines. On
Windows machines, additional backslashes would be added to the path:
C:\\Users\\Veit, because Windows uses the backslash \ as a path
separator, but it has a different meaning in strings.

To display the contents of the current directory, you can enter the
following:

>>> os.listdir(os.curdir)
['.gnupg', '.bashrc', '.local', '.bash_history', '.ssh', '.bash_logout', '.profile', '.idlerc', '.viminfo', '.config', 'Downloads', 'Documents', '.python_history']

However, you can also change to another directory and then have the
current working directory displayed:

>>> os.chdir('Downloads')
>>> os.getcwd()
'/home/veit/Downloads'

Change path names

Python provides some ways to change pathnames with the os.path [https://docs.python.org/3/library/os.path.html] submodule without having to explicitly use an
operating system-specific syntax.

	os.path.join() [https://docs.python.org/3/library/os.path.html#os.path.join]
	constructs path names for different operating systems, for example under
Windows:

>>> import os
>>> print(os.path.join('save-data', 'filesystem.rst'))
save-data\filesystem.rst

Here, the arguments are interpreted as a series of directory or file names
to be joined into a single string that is understood by the underlying
operating system as a relative path. Under Windows, this means that the
names of the path components are connected with backslashes (\).

If you do the same under Linux/macOS, on the other hand, you will get /
as the separator:

>>> import os
>>> print(os.path.join('save-data', 'filesystem.rst'))
save-data/filesystem.rst

You can therefore use this method to create file paths independently of the
operating system on which your programme is running.

The arguments do not necessarily have to be individual directory or file
names either; they can also be sub-paths that are then joined together to
form a longer path name. The following example illustrates this under
Windows, where either slashes (/) or double backslashes (\\) can be
used in the strings:

>>> import os
>>> print(os.path.join('python-basics-tutorial-de\\docs', 'save-data\\filesystem.rst'))
python-basics-tutorial-de\docs\save-data\filesystem.rst

	os.path.split() [https://docs.python.org/3/library/os.path.html#os.path.split]
	returns a tuple with two elements that separates the base name of a path
from the rest of the path, for example under macOS:

>>> import os
>>> print(os.path.split(os.getcwd()))
('/home/veit/python-basics-tutorial-de', 'docs')

	os.path.basename() [https://docs.python.org/3/library/os.path.html#os.path.basename]
	returns only the base name of the path:

>>> import os
>>> print(os.path.basename(os.getcwd()))
docs

	os.path.dirname() [https://docs.python.org/3/library/os.path.html#os.path.dirname]
	returns the path up to the base name:

>>> import os
>>> print(os.path.dirname(os.getcwd()))
/home/veit/python-basics-tutorial-de

	os.path.splitext() [https://docs.python.org/3/library/os.path.html#os.path.splitext]
	outputs the dotted extension notation used by most file systems to indicate
the file type:

>>> import os
>>> print(os.path.splitext('filesystem.rst'))
('filesystem', '.rst')

The last element of the returned tuple contains the dotted extension of the
specified file.

	os.path.commonpath() [https://docs.python.org/3/library/os.path.html#os.path.commonpath]
	is a more specialised function to manipulate path names. It finds the common
path for a group of paths and is thus good for finding the lowest level
directory that contains each file in a group of files:

>>> import os
>>> print(os.path.commonpath(['save-data/filesystem.rst', 'save-data/index.rst']))
save-data

	os.path.expandvars() [https://docs.python.org/3/library/os.path.html#os.path.expandvars]
	expands environment variables in paths:

>>> os.path.expandvars('$HOME/python-basics-tutorial')
'/home/veit/python-basics-tutorial'

Useful constants and functions

	os.name [https://docs.python.org/3/library/os.html#os.name]
	returns the name of the Python module that was imported to handle the
operating system specific details, for example:

>>> import os
>>> os.name
'nt'

Note

Most versions of Windows, with the exception of Windows CE, are
identified as nt.

On macOS and Linux, the answer is posix. Depending on the platform, you
can perform special operations with this answer:

>>> import os
>>> if os.name == 'posix':
... root_dir = '/'
... elif os.name == 'nt':
... root_dir = 'C:\\'
... else:
... print('The operating system was not recognised!')

Getting information about files

File paths show files and directories on your hard disk. To find out more about
them, there are several Python functions, including

	os.path.exists() [https://docs.python.org/3/library/os.path.html#os.path.exists]
	returns True if its argument is a path that matches a path that exists
in the filesystem.

	os.path.isfile() [https://docs.python.org/3/library/os.path.html#os.path.isfile]
	returns True if and only if the given path points to a file, and returns
False otherwise, including the possibility that the path argument points
to nothing in the filesystem.

	os.path.isdir() [https://docs.python.org/3/library/os.path.html#os.path.isdir]
	returns True if and only if its path argument points to a directory;
otherwise it returns False.

Other similar functions provide more specific queries:

	os.path.islink() [https://docs.python.org/3/library/os.path.html#os.path.islink]
	returns True if a path specifies a file that is a link. However, Windows
link files with the extension .lnk are not real links in this sense and
return False. Links created only with mklink() also return True.

	os.path.ismount() [https://docs.python.org/3/library/os.path.html#os.path.ismount]
	returns True on possix filesystems if the path is a mount point.

	os.path.samefile() [https://docs.python.org/3/library/os.path.html#os.path.samefile]
	returns True if the two path arguments point to the same file.

	os.path.isabs() [https://docs.python.org/3/library/os.path.html#os.path.isabs]
	returns True if its argument is an absolute path; otherwise returns
False.

	os.path.getsize() [https://docs.python.org/3/library/os.path.html#os.path.getsize]
	returns the size of the file or directory.

	os.path.getmtime() [https://docs.python.org/3/library/os.path.html#os.path.getmtime]
	specifies the modification date of the file or directory.

	os.path.getatime() [https://docs.python.org/3/library/os.path.html#os.path.getatime]
	gives the last access time for a file or directory.

Other file system operations

Python has other very useful commands in the os [https://docs.python.org/3/library/os.html#module-os] module: Below I
describe only some cross-operating system operations, but more specific file
system functions are also provided.

	os.rename() [https://docs.python.org/3/library/os.html#os.rename]
	names or moves a file or directory, for example

>>> os.rename('filesystem.rst', 'save-data/filesystem.rst')

	os.remove() [https://docs.python.org/3/library/os.html#os.remove]
	deletes files, for example

>>> os.remove('filesystem.rst')

	os.rmdir() [https://docs.python.org/3/library/os.html#os.rmdir]
	deletes an empty directory. To remove non-empty directories, use
shutil.rmtree() [https://docs.python.org/3/library/shutil.html#shutil.rmtree]; this function recursively removes all files in a
directory tree.

	os.makedirs() [https://docs.python.org/3/library/os.html#os.makedirs]
	creates a directory with all necessary intermediate directories, for example

>>> os.makedirs('save-data/filesystem')

Processing all files in a directory

A useful function for recursively walking through directory structures is
os.walk() [https://docs.python.org/3/library/os.html#os.walk]. You can use it to walk an entire directory tree and, for each
directory, return the path of that directory, a list of its subdirectories and a
list of its files. It can have three optional arguments: os.walk(directory,
topdown=True, onerror=None, followlinks= False).

	directory
	is the path of the starting directory

	topdown
	on True or not present, processes the files in each directory before the
subdirectories, resulting in a listing that starts at the top and goes down;

on False, the subdirectories of each directory are processed first,
resulting in a traversal of the tree from bottom to top.

	onerror
	can be set to a function to handle errors resulting from calls to
os.listdir() [https://docs.python.org/3/library/os.html#os.listdir], which are ignored by default. Usually symbolic links are
not followed unless you specify the parameter follow-links=True.

 1>>> import os
 2>>> for root, dirs, files in os.walk(os.curdir):
 3... print("{0} has {1} files".format(root, len(files)))
 4... if ".ipynb_checkpoints" in dirs:
 5... dirs.remove(".ipynb_checkpoints")
 6...
 7. has 13 files
 8./control-flows has 13 files
 9./save-data has 30 files
10./test has 15 files
11./test/coverage has 3 files
12…

	Line 4
	checks for a directory called .ipynb_checkpoints.

	Line 5
	removes .ipynb_checkpoints from the directory list.

shutil.copytree() [https://docs.python.org/3/library/shutil.html#shutil.copytree] recursively makes copies of all files in a directory and
all its subdirectories, preserving information about access and modification
times. shutil [https://docs.python.org/3/library/shutil.html#module-shutil] also has the already mentioned shutil.rmtree() [https://docs.python.org/3/library/shutil.html#shutil.rmtree]
function for removing a directory and all its subdirectories, and several
functions for making copies of individual files.

 The pickle module

The pickle module

Python can write any data structure to a file, read that data structure back out
of the file, and recreate it with just a few commands. This capability can be
very useful because it can save you many pages of code that does nothing but
write the state of a programme to a file and read that state back in.

Python provides this capability via the pickle [https://docs.python.org/3/library/pickle.html]
module. Pickle is powerful, but simple to use. Suppose that the entire state of
a programme is stored in three variables: a, b and c. You can store
this state in a file called data.pickle as follows:

	Importing the pickle module

>>> import pickle

	Define different data

>>> a = [1, 2.0, 3+4j]
>>> b = ("character string", b"byte string")
>>> c = {None, True, False}

	Writing the data

>>> with open('data.pickle', 'wb') as f:
... pickle.dump(a, f)
... pickle.dump(b, f)
... pickle.dump(c, f)

It does not matter what was stored in the variables. The content can be as
simple as numbers or as complex as a list of dictionaries containing
instances of user-defined classes. pickle.dump() [https://docs.python.org/3/library/pickle.html#pickle.dump] saves everything.

The pickle module can store almost anything in this way. It can handle
Numbers, Lists, Tuples,
Dictionaries, Strings and pretty much anything made up
of these object types, including all class instances. It also handles shared
objects, cyclic references and other complex storage structures correctly by
storing shared objects only once and restoring them as shared objects, not as
identical copies.

	Loading pickled data:

This data can be read in again during a later programme run with
pickle.load() [https://docs.python.org/3/library/pickle.html#pickle.load]:

>>> with open('data.pickle', 'rb') as f:
... first = pickle.load(f)
... second = pickle.load(f)
... third = pickle.load(f)

	Output the pickled data:

>>> print(first, second, third)
[1, 2.0, (3+4j)] ('character string', b'byte string') {False, None, True}

However, in most cases you will not want to restore all your data in the order
it was saved. A simple and effective way to restore only the data of interest is
to write a save function that stores all the data you want to save in a
dictionary and then use Pickle to save the dictionary. You can then use a
complementary restore function to read the dictionary back in and assign the
values in the dictionary to the appropriate programme variables. If you use this
approach with the previous example, you will get the following code:

>>> def save():
... # Serialise Python objects
... data = {'a': a, 'b': b, 'c': c}
... # File with pickles
... with open('data.pickle', 'wb') as f:
... pickle.dump(data, f)

You can then output the data from c with

>>> with open('data.pickle', 'rb') as f:
... saved_data = pickle.load(f)
... print(saved_data['c'])
...
{False, None, True}

In addition to pickle.dump() [https://docs.python.org/3/library/pickle.html#pickle.dump] and pickle.load() [https://docs.python.org/3/library/pickle.html#pickle.load], there are also
the functions pickle.dumps() [https://docs.python.org/3/library/pickle.html#pickle.dumps] and pickle.loads() [https://docs.python.org/3/library/pickle.html#pickle.loads]. The appended
s indicates that these functions process strings.

Warning

Although using a pickled object in the previous scenario can make sense, you
should also be aware of the disadvantages of pickling:

	Pickling is neither particularly fast nor space-saving as a means of
serialisation. Even using json [https://docs.python.org/3/library/json.html] to store
serialised objects is faster and results in smaller files on disk.

	Pickling is not secure, and loading a pickle with malicious content can
lead to the execution of arbitrary code on your machine. Therefore, you
should avoid pickling if there is a possibility that the pickle file is
accessible to someone who could modify it.

	Pickle versions are not always backwards compatible.

See also

	Python-Module-Dokumentation [https://docs.python.org/3/library/pickle.html]

	Using Pickle [https://wiki.python.org/moin/UsingPickle]

 The xml module

The xml module

The XML [https://docs.python.org/3/library/xml.html] module comes with Python. In the following
section we will focus on the two sub-modules minidom [https://docs.python.org/3/library/xml.dom.minidom.html] and ElementTree [https://docs.python.org/3/library/xml.etree.elementtree.html].

Working with minidom

In the following example we analyse books.xml:

 1<?xml version="1.0"?>
 2<catalog>
 3 <book id="1">
 4 <title>Python basics</title>
 5 <language>en</language>
 6 <author>Veit Schiele</author>
 7 <license>BSD-3-Clause</license>
 8 <date>2021-10-28</date>
 9 </book>
10 <book id="2">
11 <title>Jupyter Tutorial</title>
12 <language>en</language>
13 <author>Veit Schiele</author>
14 <license>BSD-3-Clause</license>
15 <date>2019-06-27</date>
16 </book>
17 <book id="3">
18 <title>Jupyter Tutorial</title>
19 <language>de</language>
20 <author>Veit Schiele</author>
21 <license>BSD-3-Clause</license>
22 <date>2020-10-26</date>
23 </book>
24 <book id="4">
25 <title>PyViz Tutorial</title>
26 <language>en</language>
27 <author>Veit Schiele</author>
28 <license>BSD-3-Clause</license>
29 <date>2020-04-13</date>
30 </book>
31</catalog>

	To do this, we first import the minidom module and give it the same name
so that it can be referenced more easily:

1import xml.dom.minidom as minidom

	Then we define the method getTitles and capture the desired XML tags with
the method getElementsByTagName:

 4def getTitles(xml):
 5 """
 6 Print all titles found in books.xml
 7 """
 8 doc = minidom.parse(xml)
 9 node = doc.documentElement
10 books = doc.getElementsByTagName("book")

	Then we create an empty list called titles, which is filled with the
title objects:

12 titles = []
13 for book in books:
14 titleObj = book.getElementsByTagName("title")[0]
15 titles.append(titleObj)

	Now the title is output in nested for-loops:

17 for title in titles:
18 nodes = title.childNodes
19 for node in nodes:
20 if node.nodeType == node.TEXT_NODE:
21 print(node.data)

	Finally, we set the __name__ variable like __main__ so that the
module can be executed like the main program. Then we apply our getTitles
method to our books.xml file:

24if __name__ == "__main__":
25 document = "books.xml"
26 getTitles(document)

Parsing with ElementTree

	Importing cElementTree:

1import xml.etree.cElementTree as ET

Note

cElementTree written in C and is considerably faster than
ElementTree.

	Then we define the method parseXML and the root element:

 4def parseXML(xml_file):
 5 """
 6 Parse XML with ElementTree
 7 """
 8 tree = ET.ElementTree(file=xml_file)
 9 print(tree.getroot())
10 root = tree.getroot()
11 print(f"tag={root.tag}, attrib={root.attrib}")

<Element 'catalog' at 0x10b009620>
tag=catalog, attrib={}

	Output the XML child elements of book:

13 for child in root:
14 print(child.tag, child.attrib)
15 if child.tag == "book":
16 for step_child in child:
17 print(step_child.tag)

book {'id': '1'}
title
language
author
license
date
book {'id': '2'}
...

	Output the contents of the child elements with iter:

20 print("-" * 20)
21 print("Iterating using iter")
22 print("-" * 20)
23 books = root.iter()
24 for book in books:
25 book_children = book.iter()
26 for book_child in book_children:
27 print(f"{book_child.tag}={book_child.text}")

Iterating using iter

catalog=
book=
title=Python basics
language=en
author=Veit Schiele
license=BSD-3-Clause
date=2021-10-28
book=
title=Jupyter Tutorial
...

 The sqlite module

The sqlite module

The most important features of SQLite [https://www.sqlite.org/index.html]
are:

	self-contained

	serverless

	config free

	transactional

SQLite is used to save data locally, e.g. in mobile phones (Android, iOS) and in
browsers (Firefox, Safari, Chrome), and many other applications.

See also

	sqlite home [https://www.sqlite.org/]

	sqlite3 — DB-API 2.0 interface for SQLite databases [https://docs.python.org/3/library/sqlite3.html]

	W3Schools SQL tutorial [https://www.w3schools.com/sql/]

 Create a database

Create a database

	Import the sqlite module

1import sqlite3

	Create a database

4conn = sqlite3.connect("library.db")
5
6cursor = conn.cursor()

	Create a table

 9cursor.execute(
10 """CREATE TABLE books
11 (title text, language text, author text, license text,
12 release_date text)
13 """
14)

 Create data

Create data

	Insert a record into the database:

 7cursor.execute(
 8 """INSERT INTO books
 9 VALUES ('Python basics', 'en', 'Veit Schiele', 'BSD',
10 '2021-10-28')"""

	Save data to database:

14conn.commit()

	Insert multiple records using the more secure ? method where the number
of ? should correspond to the number of columns:

17new_books = [
18 ("Jupyter Tutorial", "en", "Veit Schiele", "BSD-3-Clause", "2019-06-27"),
19 ("Jupyter Tutorial", "de", "Veit Schiele", "BSD-3-Clause", "2020-10-26"),
20 ("PyViz Tutorial", "en", "Veit Schiele", "BSD-3-Clause", "2020-04-13"),
21]
22cursor.executemany("INSERT INTO books VALUES (?,?,?,?,?)", new_books)
23conn.commit()

 Create data from csv

Create data from csv

	Import the sqlite and csv modules

1import csv
2import sqlite3

	Point to the Library Database

4conn = sqlite3.connect("library.db")
5cursor = conn.cursor()

	Read the csv file and insert the records into the database:

 8with open("books.csv", encoding="utf-8") as f:
 9 reader = csv.reader(f, delimiter=",")
10 cursor.executemany("INSERT INTO books VALUES (?,?,?,?,?)", reader)

	Save data to database:

14conn.commit()

 Query data

Query data

	Select all records from an author:

 7def select_all_records_from_author(cursor, author):
 8 print(f"All books from {author}:")
 9 sql = "SELECT * FROM books WHERE author=?"
10 cursor.execute(sql, [author])
11 print(cursor.fetchall()) # or use fetchone()

For the print output, we use a formatted string literal or
f-string [https://docs.python.org/3/glossary.html#term-f-string] by prefixing it with an f.

	Select all records sorted by author:

14def select_all_records_sorted_by_author(cursor):
15 print("Listing of all books sorted by author:")
16 for row in cursor.execute("SELECT rowid, * FROM books ORDER BY author"):
17 print(row)

	Select titles containing Python:

20def select_using_like(cursor, text):
21 print(f"All books with {text} in the title:")
22 sql = f"""
23 SELECT * FROM books
24 WHERE title LIKE '{text}%'"""
25 cursor.execute(sql)
26 print(cursor.fetchall())

	Finally, the data can be queried with:

29select_all_records_from_author(cursor, author="Veit Schiele")
30select_all_records_sorted_by_author(cursor)
31select_using_like(cursor, text="Python")

All books from Veit Schiele:
[(1, 'Python basics', 'en', 'Veit Schiele', 'BSD-3-Clause', '2021-10-28'), (2, 'Jupyter Tutorial', 'en', 'Veit Schiele', 'BSD-3-Clause', '2019-06-27'), (3, 'Jupyter Tutorial', 'de', 'Veit Schiele', 'BSD-3-Clause', '2020-10-26'), (4, 'PyViz Tutorial', 'en', 'Veit Schiele', 'BSD-3-Clause', '2020-04-13')]
Listing of all books sorted by author:
(1, 'Python basics', 'en', 'Veit Schiele', 'BSD-3-Clause', '2021-10-28')
(2, 'Jupyter Tutorial', 'en', 'Veit Schiele', 'BSD-3-Clause', '2019-06-27')
(3, 'Jupyter Tutorial', 'de', 'Veit Schiele', 'BSD-3-Clause', '2020-10-26')
(4, 'PyViz Tutorial', 'en', 'Veit Schiele', 'BSD-3-Clause', '2020-04-13')
All books with Python in the title:
[(1, 'Python basics', 'en', 'Veit Schiele', 'BSD-3-Clause', '2021-10-28')]

 Update data

Update data

	Change a license

 4def update_license(old_name, new_name):
 5 conn = sqlite3.connect("library.db")
 6 cursor = conn.cursor()
 7 sql = f"""
 8 UPDATE books
 9 SET license = '{new_name}'
10 WHERE license = '{old_name}'
11 """
12 cursor.execute(sql)
13 conn.commit()

	Calling the method:

16update_license(old_name="BSD", new_name="BSD-3-Clause")

 Delete data

Delete data

	Delete all books in a specific language:

 4def delete_by_language(language):
 5 conn = sqlite3.connect("library.db")
 6 cursor = conn.cursor()
 7
 8 sql = f"""
 9 DELETE FROM books
10 WHERE language = '{language}'
11 """
12 cursor.execute(sql)
13 conn.commit()

	Call the method with the parameter of the language to be deleted:

16delete_by_language(language="de")

 Normalising the data

Normalising the data

Normalisation [https://en.wikipedia.org/wiki/Database_normalization] is the
division of attributes or table columns into several relations or tables so that
no redundancies are included.

Example

In the following example, we normalise the language in which the books were
published.

	To do this, we first create a new table languages with the columns id
and language_code:

6cursor.execute(
7 """CREATE TABLE languages
8 (id INTEGER PRIMARY KEY AUTOINCREMENT,
9 language_code VARCHAR(2))"""

	Then we create the values de and en in this table:

12cursor.execute(
13 """INSERT INTO languages (language_code)
14 VALUES ('de')"""
15)
16
17cursor.execute(
18 """INSERT INTO languages (language_code)

	Since SQLite does not support MODIFY COLUMN, we now create a temporary
table temp with all columns from books and a column language_code
that uses the column id from the languages table as a foreign key:

22cursor.execute(
23 """CREATE TABLE "temp" (
24 "id" INTEGER,
25 "title" TEXT,
26 "language_code" INTEGER REFERENCES languages(id),
27 "language" TEXT,
28 "author" TEXT,
29 "license" TEXT,
30 "release_date" DATE,
31 PRIMARY KEY("id" AUTOINCREMENT)
32)"""

	Now we transfer the values from the books table to the temp table:

35cursor.execute(
36 """INSERT INTO temp (title,language,author,license,release_date)
37 SELECT title,language,author,license,release_date FROM books"""

	Transfer the specification of the language in books as the id of the
data records from the languages table to temp.

40cursor.execute(
41 """UPDATE temp
42 SET language_code = 1
43 WHERE language = 'de'"""
44)

	Now we can delete the languages column in the temp table:

55cursor.execute("""ALTER TABLE temp DROP COLUMN language""")

Note

DROP COLUMN can only be used from Python versions from 3.8 that were
released after 27 April 2021.

With older Python versions, another table would have to be created that no
longer contains the languages column and then the data records from
temp would have to be inserted into this table.

	The books table can now also be deleted:

57cursor.execute("""DROP TABLE books""")

	And finally, the temp table can be renamed books:

59cursor.execute("""ALTER TABLE temp RENAME TO books""")

 Query normalised data

Query normalised data

	Query all books sorted by language_id and title:

 7def select_all_records_ordered_by_language_number(cursor):
 8 print("All books ordered by language id and title:")
 9 for row in cursor.execute(
10 """SELECT language_code, author, title FROM books
11 ORDER BY language_code,title"""
12):
13 print(row)

All books ordered by language id and title:
(1, 'Veit Schiele', 'Jupyter Tutorial')
(2, 'Veit Schiele', 'Jupyter Tutorial')
(2, 'Veit Schiele', 'PyViz Tutorial')
(2, 'Veit Schiele', 'Python basics')

	In order to receive not only the ID of the languages but also the
corresponding language codes, a connection to the language codes stored there
is established with JOIN via the id column in the languages
table:

16def select_all_records_ordered_by_language_code(cursor):
17 print("All books ordered by language code and title:")
18 for row in cursor.execute(
19 """SELECT languages.language_code, books.author, books.title
20 FROM books
21 JOIN languages ON (books.language_code = languages.id)
22 ORDER BY languages.language_code,title"""
23):
24 print(row)

All books ordered by language code and title:
('de', 'Veit Schiele', 'Jupyter Tutorial')
('en', 'Veit Schiele', 'Jupyter Tutorial')
('en', 'Veit Schiele', 'PyViz Tutorial')
('en', 'Veit Schiele', 'Python basics')

 The psycopg module

The psycopg module

	Install the psycopg module

$ python3 -m pip install psycopg
Collecting psycopg
 Downloading psycopg-3.0.1-py3-none-any.whl (140 kB)
 |████████████████████████████████| 140 kB 3.4 MB/s
Installing collected packages: psycopg
Successfully installed psycopg-3.0.1

	Import the psycopg module

1import psycopg2

	Create a database

3conn = psycopg2.connect(dbname="my_db", user="username")
4cursor = conn.cursor()

	Query the database

7cursor.execute("SELECT * FROM my_table")
8row = cursor.fetchone()

	Close cursor and connection

11cursor.close()
12conn.close()

 dataclasses

dataclasses

dataclasses [https://docs.python.org/3/library/dataclasses.html] were introduced in Python 3.7 and are a
special shortcut with which we can create classes that store data. Python offers a special
decorator if we want to create such a class.

Note

For table data I generally use pandas Series or DataFrames [https://www.python4data.science/en/latest/workspace/pandas/data-structures.html] and if I need to store
matrices with numbers I use Numpy [https://www.python4data.science/en/latest/workspace/numpy/index.html].

Let’s say we want to store a class that represents an item with summary,
owner, state and id. We can define such a class with:

>>> from dataclasses import dataclass
>>> @dataclass
... class Item:
... summary: str = None
... owner: str = None
... state: str = "todo"
... id: int = None

The @dataclass decorator creates the __init__ and __repr__ methods.
If I display the instance of the class, I get the class name and the attributes:

>>> i1
Item(summary='My first item', owner='veit', state='todo', id=1)

In general, data classes are used as syntactic sugar for creating classes that
store data. You can add extra functionality to your classes by defining methods.
We will add a method to the class that creates an Item object from a
Dict:

>>> @dataclass
... class Item:
…
... @classmethod
... def from_dict(cls, d):
... return Item(**d)
...
>>> item_dict = {"summary": "My first item", "owner": "veit", "state": "todo", "id": 1}
>>> Item.from_dict(item_dict)
Item(summary='My first item', owner='veit', state='todo', id=1)

 Testing

Testing

Basically, a distinction is made between static and dynamic test procedures.

	Static test procedures
	are used to check the source code, but it’s not executed. They are divided
into

	reviews [https://www.python4data.science/en/latest/productive/security.html#code-reviews] and

	static program analysis [https://en.wikipedia.org/wiki/Static_program_analysis]

There are several Python packages that can help you with static program
analysis, including flake8 [https://www.python4data.science/en/latest/productive/qa/flake8.html],
Pysa [https://www.python4data.science/en/latest/productive/qa/pysa.html] and
Wily [https://www.python4data.science/en/latest/productive/qa/wily.html].

	Dynamic testing
	are used to find errors when executing the source code. A distinction is
made between whitebox and backbox tests.

	Whitebox tests
	are developed with knowledge of the source code and the software
structure. In Python, various modules are available:

	Unittest
	supports you in automating tests.

	Mock
	allows you to create and use mock objects.

	Doctest
	allows you to test tests written in Python docstrings.

	tox
	allows you to test in different environments.

	Blackbox tests
	are developed without knowledge of the source code. In addition to
Unittest, Hypothesis can also be used in Python for such
tests.

See also

	Python Testing and Continuous Integration [http://carpentries-incubator.github.io/python-testing/]

 Unittest

Unittest

unittest [https://docs.python.org/3/library/unittest.html] supports you in test automation with
shared setup and tear-down code as well as aggregation and independence of
tests.

It provides the following test concepts:

	Test Case
	tests a single scenario.

	Test Fixture
	is a consistent test environment.

See also

	pytest fixtures [https://docs.pytest.org/en/latest/fixture.html]

	About fixtures [https://docs.pytest.org/en/latest/explanation/fixtures.html#about-fixtures]

	Fixtures reference [https://docs.pytest.org/en/latest/reference/fixtures.html]

	How to use fixtures [https://docs.pytest.org/en/latest/how-to/fixtures.html#how-to-fixtures]

	Test Suite
	is a collection of several test cases.

	Test Runner
	runs through a Test Suite and displays the results.

Example

Suppose you have implemented the following add method in the
test_arithmetic.py module:

1def add(x, y):
2 """
3 >>> add(7,6)
4 13
5 """
6 return x + y

… then you can test this method with a Unittest.

	To do this, you must first import your module and the unittest module:

1import unittest
2class TestArithmetic(unittest.TestCase):

	Then you can write a test method that illustrates your addition method:

6class TestArithmetic(unittest.TestCase):
7 def test_addition(self):
8 self.assertEqual(arithmetic.add(7, 6), 13)
9

	In order to import the unittests into other modules, you should add the
following lines:

23if __name__ == "__main__":
24 unittest.main()

	Finally, all tests in test_arithmetic.py can be executed:

Linux/macOS
$ bin/python test_arithmetic.py
....
--
Ran 4 tests in 0.000s

OK

Windows
C:> python test_arithmetic.py
....
--
Ran 4 tests in 0.000s

OK

 Example: Testing an SQLite database

Example: Testing an SQLite database

	To test whether the database library.db was created with
create_db.py, we import
../save-data/create_db.py and os [https://docs.python.org/3/library/os.html] in
addition to sqlite3 [https://docs.python.org/3/library/sqlite3.html] and unittest [https://docs.python.org/3/library/unittest.html]:

1import os
2import sqlite3
3import unittest
4
5import create_db

	Then we first define a test class TestCreateDB:

8class TestCreateDB(unittest.TestCase):

	In it we then define the test method test_db_exists, in which we use
assert to assume that the file exists in os.path [https://docs.python.org/3/library/os.path.html]:

 9 def test_db_exists(self):
10 assert os.path.exists("library.db")

	Now we also check whether the books table was created. For this we try to
create the table again and expect with assertRaises that sqlite is
terminated with an OperationalError:

12 def test_table_exists(self):
13 with self.assertRaises(sqlite3.OperationalError):
14 create_db.cursor.execute("CREATE TABLE books(title text)")

	We do not want to carry out further tests on a database in the file system
but in an SQLite database in the working memory:

17class TestCommands(unittest.TestCase):
18 def setUp(self):
19 self.conn = sqlite3.connect(":memory:")
20 cursor = self.conn.cursor()

See also

You can find more examples for testing your SQLite database functions in the
SQLite test suite test_sqlite3 [https://github.com/python/cpython/tree/main/Lib/test/test_sqlite3].

 Doctest

Doctest

The Python module doctest [https://docs.python.org/3/library/doctest.html] checks whether the
tests specified in a docstring are fulfilled.

	In arithmetic.py you can add the following docstring:

 9def divide(x, y):
10 """Divides the first parameter by the second
11 >>> x, y, z = 7, -6.0, 0
12 >>> divide(x, y)
13 -1.1666666666666667
14 >>> divide(x, z)
15 Traceback (most recent call last):
16 File "<stdin>", line 1, in <module>
17 ZeroDivisionError: division by zero
18 """

	Then you can test it with:

Linux/macOS
$ python -m doctest test/arithmetic.py -v
Trying:
 add(7,6)
Expecting:
 13
ok
Trying:
 x, y, z = 7, -6.0, 0
Expecting nothing
ok
Trying:
 divide(x, y)
Expecting:
 -1.1666666666666667
ok
Trying:
 divide(x, z)
Expecting:
 Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
 ZeroDivisionError: division by zero
ok
Trying:
 multiply(7,6)
Expecting:
 42
ok
Trying:
 subtract(7,6)
Expecting:
 1
ok
1 items had no tests:
 arithmetic
4 items passed all tests:
 1 tests in arithmetic.add
 3 tests in arithmetic.divide
 1 tests in arithmetic.multiply
 1 tests in arithmetic.subtract
6 tests in 5 items.
6 passed and 0 failed.
Test passed.

Windows
C:> Scripts\python -m doctest arithmetic.py -v
Trying:
 add(7,6)
Expecting:
 13
ok
Trying:
 x, y, z = 7, -6.0, 0
Expecting nothing
ok
Trying:
 divide(x, y)
Expecting:
 -1.1666666666666667
ok
Trying:
 divide(x, z)
Expecting:
 Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
 ZeroDivisionError: division by zero
ok
Trying:
 multiply(7,6)
Expecting:
 42
ok
Trying:
 subtract(7,6)
Expecting:
 1
ok
1 items had no tests:
 arithmetic
4 items passed all tests:
 1 tests in arithmetic.add
 3 tests in arithmetic.divide
 1 tests in arithmetic.multiply
 1 tests in arithmetic.subtract
6 tests in 5 items.
6 passed and 0 failed.
Test passed.

 Hypothesis

