
Python basics
Release 24.1.0

Veit Schiele

Apr 11, 2024

CONTENTS

1 Introduction 3
1.1 About Python . 3

2 Installation 7

3 Editors 9
3.1 Interactive Shell . 9
3.2 IDLE . 10

4 Exploring Python 11
4.1 help() . 11
4.2 dir(), globals() and locals() . 11

5 Style 13
5.1 Indentation and blocks . 13
5.2 Comments . 13
5.3 Basic Python style . 13

6 Variables and expressions 15
6.1 Variables . 15
6.2 Expressions . 17

7 Data types 19
7.1 Numbers . 19
7.2 Lists . 23
7.3 Tuples . 26
7.4 Sets . 27
7.5 Dictionaries . 27
7.6 Strings . 29
7.7 Files . 38
7.8 None . 42

8 Input 45

9 Control flows 47
9.1 Boolean values and expressions . 47
9.2 if-elif-else statement . 48
9.3 Loops . 49
9.4 Exceptions . 51
9.5 Context management with with . 52

i

10 Functions 55
10.1 Basic function definitions . 55
10.2 Parameters . 56

11 Modules 65
11.1 What is a module? . 65
11.2 Creating modules . 65
11.3 Command line arguments . 67
11.4 The argparse module . 68

12 Programme libraries 71
12.1 „Batteries included“ . 71
12.2 Adding more Python libraries . 74
12.3 Packages and programmes . 76
12.4 Creating a distribution package . 77
12.5 GitLab Package Registry . 86
12.6 Templating . 88
12.7 Upload package . 95
12.8 cibuildwheel . 100
12.9 Binary Extensions . 104
12.10 Glossary . 109

13 Object Orientation 115
13.1 Classes . 115
13.2 Variables . 116
13.3 Methods . 118
13.4 Inheritance . 121
13.5 Summary . 123
13.6 Private variables and methods . 125
13.7 @property decorator . 126
13.8 Namespaces . 126
13.9 Data types as objects . 128

14 Save and access data 133
14.1 The Python Database API . 133
14.2 SQLAlchemy . 133
14.3 NoSQL databases . 133

15 dataclasses 151

16 Testing 153
16.1 Unittest . 154
16.2 Example: Testing an SQLite database . 156
16.3 Doctest . 156
16.4 Hypothesis . 159
16.5 pytest . 161
16.6 Coverage . 220
16.7 Mock . 229
16.8 tox . 236
16.9 unittest2 . 246
16.10 Glossary . 246

17 Document 249
17.1 Create a Sphinx project . 249
17.2 reStructuredText . 252

ii

17.3 Code blocks . 256
17.4 Placeholder . 259
17.5 UI elements and interactions . 260
17.6 Directives . 260
17.7 Intersphinx . 265
17.8 Unified Modeling Language (UML) . 268
17.9 Extensions . 272
17.10 Testing . 274
17.11 shot-scraper . 275
17.12 Badges . 277
17.13 Sphinx . 277
17.14 Other documentation tools . 278

18 Appendix 279
18.1 Regular expressions . 279
18.2 Unicode and character encodings . 280

Index 285

iii

iv

Python basics, Release 24.1.0

Welcome to Python Basics! I have written this book to provide an easy and practical introduction to Python. The book
is not intended to be a comprehensive reference guide to Python, but rather the goal is to give you a basic familiarity
with Python and enable you to quickly write your own programs.

Note: If you have suggestions for improvements, I would be happy to receive them.

CONTENTS 1

Python basics, Release 24.1.0

2 CONTENTS

CHAPTER

ONE

INTRODUCTION

1.1 About Python

You may be asking yourself why you should learn Python. There are many programming languages from C and C++
to Java, Lua and Go.

Fig. 1: TIOBE Index für Oktober 2022

Python has become very widely used and one of the reasons might be that it runs on many different platforms, from
IoT devices to common operating systems to supercomputers. It can be used well for developing small applications
and fast prototypes. In the process, there are countless software libraries to make your work easier.

Python is a modern programming language developed by Guido van Rossum in the 1990s.

See also:
• The Origins of Python by Lambert Meertens

Some strengths of Python are

ease of use
Some of the reasons for this are that types are associated with objects, not variables; a variable can be assigned
values of any type and a list can contain objects of different types. Also, the syntax rules are very simple and
you can quickly learn to write useful code.

Expressive power
Often you can achieve much more in a few lines of code than in other languages. As a result, you can complete
your projects more quickly, and debugging and maintenance are also much easier.

Readability
The easy readability of Python code simplifies debugging and maintenance. One of the ways Python achieves
this is by requiring indentation.

Completeness
With the installation of Python, everything essential needed for programming with Python is already available,
emails, websites, databases, without the need to install additional libraries.

Platform independence
Python runs on many platforms: Windows, Mac, Linux etc /et cetera). There are even variants that run on
Java (Jython) and .NET (IronPython).

Open Source
You can download Python and use it freely for developing commercial or private applications. Python is used
and promoted by many established companies, including Google, Meta and Bloomberg. And if you want to give
something back, you are also welcome to do so : Python Software Foundation Sponsorship

3

https://www.tiobe.com/tiobe-index/
https://inference-review.com/article/the-origins-of-python
https://www.jython.org/
https://ironpython.net/
https://www.python.org/psf/sponsorship/

Python basics, Release 24.1.0

Fig. 2: XKCD: Python

4 Chapter 1. Introduction

https://xkcd.com/353

Python basics, Release 24.1.0

Python has some advantages, but no language is the best solution in all areas. For example, Python performs less well
in the following areas:

Speed
Python is not a fully compiled language and code is first compiled into bytecode before being executed by the
Python interpreter. While there are some tasks, such as string parsing with regular expressions, for which Python
provides efficient implementations, and which are as fast as a C program, Python programs will still be slower
than C programs in most cases. However, this rarely plays a decisive role, since there are already many Python
modules that use C internally.

See also:
• Performance

Diverse libraries
Python already has a lot of libraries, but in some cases you will only find suitable libraries in other languages.
For most problems that need to be solved programmatically, however, Python’s library support is excellent.

Variable types
Unlike in many other languages, variables are not containers, but rather labels that refer to various objects:
Integers, strings, class instances and more. Some find it a disadvantage that Python does not simply perform
type validation here, but the number of type errors is usually manageable and the flexibility of dynamic typing
usually outweighs the problems.

Support for mobile devices
Even though mobile devices have proliferated in recent years, Python does not have a strong presence in this
area. While there are a few options to deploy and run Python on mobile devices, this is not always easy.

Support for concurrent computation
Processors with multiple cores are now widespread and lead to significant performance gains in many areas.
However, the standard implementation of Python is not designed to use multiple cores.

See also:
• Introduction to multithreading, multiprocessing and async

1.1. About Python 5

https://www.python4data.science/en/latest/performance/index.html
https://www.python4data.science/en/latest/performance/multiprocessing-threading-async.html

Python basics, Release 24.1.0

6 Chapter 1. Introduction

CHAPTER

TWO

INSTALLATION

The installation of Python is simple. The first step is to download the latest version from www.python.org/downloads.
The tutorial is based on Python 3.10, but if you have Python 3.7 or 3.8 installed, that is no problem either.

Most Linux distributions have Python already installed. If a precompiled version of Python exists in your Linux distri-
bution, I recommend you to use it.

You need a Python version that matches your macOS and processor. Once you have determined the correct version,
you can download the image file, mount it with a double click and then start the installation programme contained in
it. Python will then be in the Applications folder.

If you use Homebrew, you can also install Python in the terminal with:

$ brew install python3

Python can be installed for most Windows versions after Windows 7 with the Python installer in three steps:

1. Download the latest Python Releases for Windows installer, for example Windows installer (64-bit).

2. Start the installation programme. If you have the necessary permissions, install Python with the option Install
launcher for all users. This should install Python in C:\Program Files\Python310-64. Also, Add Python
3.10 to PATH should be activated so that this path to the Python installation is also entered in the list of PATH
environment variables.

3. Finally, you can now check the installation by entering the following in the command prompt:

C:\> python -V
Python 3.10.6

Note: If Python is already installed on your system, you can easily install your own Python. A new version does not
replace the old one but is installed in a different location.

7

https://www.python.org/downloads/
https://brew.sh/
https://www.python.org/downloads/windows/
https://www.python.org/ftp/python/3.10.6/python-3.10.6-amd64.exe

Python basics, Release 24.1.0

8 Chapter 2. Installation

CHAPTER

THREE

EDITORS

3.1 Interactive Shell

With the interactive shell you can easily run most of the examples in this tutorial. Later, you will also learn how to
easily include code written to a file as a module.

Type python3 in the terminal:

$ python3
Python 3.10.4 (default, Mar 23 2022, 17:29:05)
[GCC 9.4.0] on linux
Type "help", "copyright", "credits" or "license" for more information.
>>>

Open a terminal window and enter python3:

$ python3
Python 3.10.4 (v3.10.4:9d38120e33, Mar 23 2022, 17:29:05) [Clang 13.0.0 (clang-1300.0.29.
→˓30)] on darwin
Type "help", "copyright", "credits" or "license" for more information.
>>>

Note: If you get the error message Command not found, you can run Update Shell Profile, which can be found
in Applications/Python3.10.

You can start the interactive Python shell in Start → Applications → Python 3.10.

Alternatively, you can search for the directly executable file Python.exe, for example in C:\Users\VEIT\AppData\
Local\Programs\Python\Python310-64 and then double-click.

You can scroll through previous entries with the arrow keys Home, End, Page up and Page down and repeat with the
Enter key.

9

Python basics, Release 24.1.0

3.1.1 Exiting the interactive shell

To exit the interactive shell, simply use Ctrl-d on Linux and macOS or Ctrl-z on Windows. Alternatively, you can
type exit().

3.2 IDLE

IDLE is the acronym for integrated development environment and combines an interactive interpreter with code editing
and debugging tools. It is very easy to execute on the various platforms:

Enter the following into your terminal:

$ idle-python3.10

You can start IDLE in Windows → All Apps → IDLE (Python GUI)

You can scroll through the history of previous commands with the alt-p and alt-n keys.

10 Chapter 3. Editors

CHAPTER

FOUR

EXPLORING PYTHON

Whether you use IDLE or the interactive shell, there are some useful functions to explore Python.

4.1 help()

help() has two different modes. When you type help(), you call the help system, which you can use to get information
about modules, keywords, and other topics. When you are in the help system, you will see a prompt with help>. You
can now enter a module name, for example float, to search the Python documentation for that type.

help() is part of the pydoc library, which provides access to the documentation built into Python libraries. Since every
Python installation comes with full documentation, you have all the documentation at your fingertips even offline.

Alternatively, you can use help() more specifically by passing a type or variable name as a parameter, for example:

>>> x = 4.2
>>> help(x)
Help on float object:

class float(object)
| float(x=0, /)
|
| Convert a string or number to a floating point number, if possible.
|
| Methods defined here:
|
| __abs__(self, /)
| abs(self)
...

4.2 dir(), globals() and locals()

dir() is another useful function that lists objects in a specific namespace. If you use it without parameters, you can
find out which methods and data are available locally. Alternatively, it can also list objects for a module or type.

>>> dir()
['__annotations__', '__builtins__', '__doc__', '__loader__', '__name__', '__package__',
→˓'__spec__', 'x']
>>> dir(x)
['__abs__', '__add__', '__bool__', '__ceil__', '__class__', '__delattr__', '__dir__', '__

(continues on next page)

11

https://docs.python.org/
https://docs.python.org/3/library/pydoc.html
https://docs.python.org/3/library/functions.html#dir

Python basics, Release 24.1.0

(continued from previous page)

→˓divmod__', '__doc__', '__eq__', '__float__', '__floor__', '__floordiv__', '__format__',
→˓ '__ge__', '__getattribute__', '__getformat__', '__getnewargs__', '__getstate__', '__
→˓gt__', '__hash__', '__init__', '__init_subclass__', '__int__', '__le__', '__lt__', '__
→˓mod__', '__mul__', '__ne__', '__neg__', '__new__', '__pos__', '__pow__', '__radd__', '_
→˓_rdivmod__', '__reduce__', '__reduce_ex__', '__repr__', '__rfloordiv__', '__rmod__', '_
→˓_rmul__', '__round__', '__rpow__', '__rsub__', '__rtruediv__', '__setattr__', '__
→˓sizeof__', '__str__', '__sub__', '__subclasshook__', '__truediv__', '__trunc__', 'as_
→˓integer_ratio', 'conjugate', 'fromhex', 'hex', 'imag', 'is_integer', 'real']

In contrast to dir(), both globals() and locals() display the values associated with the objects. Currently, both
functions return the same thing:

>>> globals()
{'__name__': '__main__', '__doc__': None, '__package__': None, '__loader__': <class '_
→˓frozen_importlib.BuiltinImporter'>, '__spec__': None, '__annotations__': {}, '__
→˓builtins__': <module 'builtins' (built-in)>, 'x': 4.2}

12 Chapter 4. Exploring Python

https://docs.python.org/3/library/functions.html#dir
https://docs.python.org/3/library/functions.html#globals
https://docs.python.org/3/library/functions.html#locals

CHAPTER

FIVE

STYLE

5.1 Indentation and blocks

Python differs from most other programming languages because it uses indentation to determine structure (that is, to
determine what the while clause of a condition etc. (et cetera) represents). Most other languages use curly braces to
do this. In the following example, the indentation of lines 3–6 determines that they belong to the while statement:

1 >>> x, y = 6, 3
2 >>> while x > y:
3 ... x -= 1
4 ... if x == 4:
5 ... break
6 ... print(x)

Indentations to structure the code instead of curly braces takes a little getting used to, but offers significant advantages:

• You can have neither missing nor too many brackets. Also, you no longer have to search for the bracket that
might match earlier brackets.

• The visual structure of the code reflects its actual structure, making it much easier to understand.

• Python coding styles are mostly uniform; in other words, your code will mostly look very similar to that of others.

5.2 Comments

Most of the time, anything that follows # is a comment and is ignored when the code is executed. The obvious exception
is # in a string:

>>> x = "# This is a string and not a comment"

5.3 Basic Python style

In Python, there are relatively few restrictions on coding style, with the obvious exception that code must be divided
into blocks by indentation. Even in this case, how (tabs or spaces) and how far indentation is used is not prescribed.
However, there are preferred stylistic conventions for Python, which are contained in the Python Enhancement Proposal
(PEP) 8. A selection of Python conventions can be found in the following table:

13

Python basics, Release 24.1.0

Context Recommendation Example
Module and package
names

short, lower case, underscores only if necessary math, sys

Function names lower case, underscores if necessary my_func()
Variable names lower case, with underscores if necessary my_var
Class names CamelCase notation MyClass
Constant names Capital letters with underscores PI
Indentation Four spaces per level, no tabs
Compare not explicitly with True or False, see also Boolean values

and expressions
if my_var:, if not
my_var:

See also:
• PEP 8

I strongly recommend following the conventions of PEP 8. They are tried and tested, and make your code easier to
understand for yourself and others.

14 Chapter 5. Style

https://peps.python.org/pep-0008/

CHAPTER

SIX

VARIABLES AND EXPRESSIONS

6.1 Variables

The most commonly used command in Python is assignment. The Python code to create a Vairiable called x that is to
be given the value is:

>>> pi = 3.14159

In Python, unlike many other programming languages, neither a variable declaration nor an end-of-line delimiter is
necessary. The line is terminated by the end of the line. Variables are created automatically when they are assigned for
the first time.

Note: In Python, variables are labels that refer to objects. Any number of labels can refer to the same object, and if
that object changes, so does the value to which all those variables refer. To better understand what this means, see the
following example:

>>> x = [1, 2, 3]
>>> y = x
>>> y[0] = 4
>>> print(x)
[4, 2, 3]

However, variables can also refer to constants:

>>> x = 1
>>> y = x
>>> z = y
>>> y = 4
>>> print(x,y,z)
1 4 1

In this case, after the third line, x, y and z all refer to the same immutable integer object with the value 1. The next
line, y = 4, causes y to refer to the integer object 4, but this does not change the references of x or z.

Python variables can be set to any object, whereas in many other languages variables can only be stored in the declared
type.

Variable names are case-sensitive and can contain any alphanumeric character as well as underscores, but must begin
with a letter or underscore.

15

Python basics, Release 24.1.0

Note: If you receive a SyntaxError, check whether the variable name is a keyword. Keywords are reserved for use
in Python language constructs, so you cannot turn them into variables. After calling help() you can enter keywords to
get the keywords:

>>> help()
...
help> keywords
Here is a list of the Python keywords. Enter any keyword to get more help.
False class from or
None continue global pass
True def if raise
and del import return
as elif in try
assert else is while
async except lambda with
await finally nonlocal yield
break for not

Note: You can use a variable name to overwrite built-in functions, types and other objects so that they can then only
be accessed via the builtins module. These variable names should therefore never be used. You can obtain a list of the
__builtins__ objects with :

>>> dir(__builtins__)
['ArithmeticError', 'AssertionError', 'AttributeError', 'BaseException',
→˓'BaseExceptionGroup', 'BlockingIOError', 'BrokenPipeError', 'BufferError',
→˓'BytesWarning', 'ChildProcessError', 'ConnectionAbortedError', 'ConnectionError',
→˓'ConnectionRefusedError', 'ConnectionResetError', 'DeprecationWarning', 'EOFError',
→˓'Ellipsis', 'EncodingWarning', 'EnvironmentError', 'Exception', 'ExceptionGroup',
→˓'False', 'FileExistsError', 'FileNotFoundError', 'FloatingPointError', 'FutureWarning',
→˓ 'GeneratorExit', 'IOError', 'ImportError', 'ImportWarning', 'IndentationError',
→˓'IndexError', 'InterruptedError', 'IsADirectoryError', 'KeyError', 'KeyboardInterrupt',
→˓ 'LookupError', 'MemoryError', 'ModuleNotFoundError', 'NameError', 'None',
→˓'NotADirectoryError', 'NotImplemented', 'NotImplementedError', 'OSError',
→˓'OverflowError', 'PendingDeprecationWarning', 'PermissionError', 'ProcessLookupError',
→˓'RecursionError', 'ReferenceError', 'ResourceWarning', 'RuntimeError', 'RuntimeWarning
→˓', 'StopAsyncIteration', 'StopIteration', 'SyntaxError', 'SyntaxWarning', 'SystemError
→˓', 'SystemExit', 'TabError', 'TimeoutError', 'True', 'TypeError', 'UnboundLocalError',
→˓'UnicodeDecodeError', 'UnicodeEncodeError', 'UnicodeError', 'UnicodeTranslateError',
→˓'UnicodeWarning', 'UserWarning', 'ValueError', 'Warning', 'ZeroDivisionError', '__
→˓build_class__', '__debug__', '__doc__', '__import__', '__loader__', '__name__', '__
→˓package__', '__spec__', 'abs', 'aiter', 'all', 'anext', 'any', 'ascii', 'bin', 'bool',
→˓'breakpoint', 'bytearray', 'bytes', 'callable', 'chr', 'classmethod', 'compile',
→˓'complex', 'copyright', 'credits', 'delattr', 'dict', 'dir', 'divmod', 'enumerate',
→˓'eval', 'exec', 'exit', 'filter', 'float', 'format', 'frozenset', 'getattr', 'globals',
→˓ 'hasattr', 'hash', 'help', 'hex', 'id', 'input', 'int', 'isinstance', 'issubclass',
→˓'iter', 'len', 'license', 'list', 'locals', 'map', 'max', 'memoryview', 'min', 'next',
→˓'object', 'oct', 'open', 'ord', 'pow', 'print', 'property', 'quit', 'range', 'repr',
→˓'reversed', 'round', 'set', 'setattr', 'slice', 'sorted', 'staticmethod', 'str', 'sum',
→˓ 'super', 'tuple', 'type', 'vars', 'zip']

16 Chapter 6. Variables and expressions

https://docs.python.org/3/library/builtins.html

Python basics, Release 24.1.0

6.2 Expressions

Python supports arithmetic and similar expressions. The following code calculates the average of x and y and stores
the result in the variable z:

>>> x = 1
>>> y = 2
>>> z = (x + y) / 2

Note: Arithmetic operators that use only integers do not always return an integer. As of Python 3, division returns a
floating point number. If you want the traditional integer division to return an integer, you can use // instead.

6.2. Expressions 17

Python basics, Release 24.1.0

18 Chapter 6. Variables and expressions

CHAPTER

SEVEN

DATA TYPES

Python has several built-in data types, such as Numbers (integers, floating point numbers, complex numbers), strings,
Lists, Tuples, Dictionaries, Sets and Files. These data types can be manipulated using language operators, built-in
functions, library functions or a data type’s own methods.

You can also define your own classes and create your own class instances. For these class instances, you can define
methods as well as manipulate them using the language operators and built-in functions for which you have defined the
appropriate special method attributes.

Note: In the Python documentation and in this book, the term object is used for instances of any Python data type,
not just what many other languages would call class instances. This is because all Python objects are instances of one
class or another.

Python has several built-in data types, from scalars like numbers and boolean values to more complex structures like
lists, dictionaries and files.

7.1 Numbers

Python’s four number types are integers, floating point numbers, complex numbers and Boolean numbers:

Type Examples
Integers -1, 42, 90000000
Floats 90000000.0, -0.005, 9e7, -5e-3
Complex numbers 3 + 2j, -4- 2j, 4.2 + 6.3j
Boolean numbers True, False

They can be manipulated with the arithmetic operators:

Operator Description
+ Addition
- Subtraction
* Multiplication
/, // Division1

** Exponentiation
% Modulus

1 Dividing integers with / results in a float, and dividing integers with // results in an integer that is truncated.

19

Python basics, Release 24.1.0

Note: Integers can be unlimited in size, limited only by the available memory.

Examples:

>>> 8 + 3 - 5 * 3
-4
>>> 8 / 3
2.6666666666666665
>>> 8 // 3
2
>>> x = 4.2 ** 3.4
>>> x
131.53689544409096
>>> 9e7 * -5e-3
-450000.0
>>> -5e-3 ** 3
-1.2500000000000002e-07

See also:
• Julia Evans: Examples of floating point problems

• David Goldberg: What Every Computer Scientist Should Know About Floating-Point Arithmetic

7.1.1 Complex numbers

Complex numbers consist of a real part and an imaginary part, which is given the suffix j in Python.

>>> 7 + 2j
(7+2j)

Note: Python expresses the resulting complex number in parentheses to indicate that the output represents the value
of a single object:

>>> (5+3j) ** (3+5j)
(-7.04464115622119-11.276062812695923j)

>>> x = (5+3j) * (6+8j)
>>> x
(6+58j)
>>> x.real
6.0
>>> x.imag
58.0

Complex numbers consist of a real part and an imaginary part with the suffix j. In the preceding code, the variable x
is assigned to a complex number. You can get its „real“ part with the attribute notation x.real and the „imaginary“
part with x.imag.

20 Chapter 7. Data types

https://jvns.ca/blog/2023/01/13/examples-of-floating-point-problems/
https://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html
https://en.wikipedia.org/wiki/Imaginary_number

Python basics, Release 24.1.0

7.1.2 Built-in numerical functions

Several built-in functions can work with numbers:

abs()
returns the absolute value of a number. Here, as argument can be an integer, a floating point number or an object
that implements __abs__(). With complex numbers as arguments, their absolute value is returned.

divmod()
takes two (non-complex) numbers as arguments and returns a pair of numbers consisting of their quotient and
the remainder if integer division is used.

float
returns a floating point number formed from a number or string x.

hex()
converts an integer number to a lowercase hexadecimal string with the prefix 0x.

int
returns an integer object constructed from a number or string x, or 0 if no arguments are given.

max()
returns the largest element in an iterable or the largest of two or more arguments.

min()
returns the smallest element in an iterable or the smallest of two or more arguments.

oct()
converts an integer number to an octal string with the prefix 0o. The result is a valid Python expression. If x is
not a Python int() object, it must define an __index__() method that returns an integer.

pow()
returns base as a power of exp.

round()
returns a number rounded to ndigits after the decimal point. If ndigits is omitted or is None, the nearest integer
to the input is returned.

7.1.3 Boolean values

Boolean values are used in the following examples:

>>> x = False
>>> x
False
>>> not x
True

>>> y = True * 2
>>> y
2

Apart from their representation as True and False, Boolean values behave like the numbers 1 (True) and 0 (False).

7.1. Numbers 21

https://docs.python.org/3/library/functions.html#abs
https://docs.python.org/3/library/functions.html#divmod
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#hex
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#max
https://docs.python.org/3/glossary.html#term-iterable
https://docs.python.org/3/library/functions.html#min
https://docs.python.org/3/library/functions.html#oct
https://docs.python.org/3/library/functions.html#pow
https://docs.python.org/3/library/functions.html#round

Python basics, Release 24.1.0

7.1.4 Advanced numerical functions

More advanced numerical functions such as trigonometry, as well as some useful constants, are not built into Python,
but are provided in a standard module called math. Module will be explained in more detail later. For now, suffice it to
say that you need to make the maths functions available in this section by importing math:

import math

Built-in functions are always available and are called using standard function call syntax. In the following code, round
is called with a float as the input argument.

>>> round(2.5)
2

With ceil from the standard library math and the attribute notation MODUL.FUNKTION(ARGUMENT) is rounded up:

>>> math.ceil(2.5)
3

The math module provides, among other things

• the number theoretic and representation functions math.ceil(), math.modf(), math.frexp() and math.
ldexp(),

• the power and logarithmic functions math.exp(), math.log(), math.log10(), math.pow() and math.
sqrt(),

• the trigonometric functions math.acos(), math.asin(), math.atan(), math.atan2(), math.ceil(),
math.cos(), math.hypot() and math.sin(),

• the hyperbolic functions math.cosh(), math.sinh() and math.tanh()

• and the constants math.e and math.pi.

7.1.5 Advanced functions for complex numbers

The functions in the math module are not applicable to complex numbers; one of the reasons for this is probably that
the square root of -1 is supposed to produce an error. Therefore, similar functions for complex numbers have been
provided in the cmath module:

cmath.acos(), cmath.acosh(), cmath.asin(), cmath.asinh(), cmath.atan(), cmath.atanh(), cmath.
cos(), cmath.cosh(), python3:cmath.e(), cmath.exp(), cmath.log(), cmath.log10(), python3:cmath.
pi(), cmath.sin(), cmath.sinh(), cmath.sqrt(), cmath.tan(), cmath.tanh().

To make it clear in the code that these functions are special functions for complex numbers, and to avoid name conflicts
with the more normal equivalents, it is recommended to simply import the module to explicitly refer to the cmath
package when using the function, for example:

>>> import cmath
>>> cmath.sqrt(-2)
1.4142135623730951j

Warning: Now it becomes clearer why we do not recommend importing all functions of a module with from
MODULE import *. If you would import the module math first and then the module cmath, the functions in
cmath would have priority over those of math. Also, when understanding the code, it is much more tedious to find
out the source of the functions used.

22 Chapter 7. Data types

https://docs.python.org/3/library/math.html
https://docs.python.org/3/library/math.html#math.ceil
https://docs.python.org/3/library/math.html#math.modf
https://docs.python.org/3/library/math.html#math.frexp
https://docs.python.org/3/library/math.html#math.ldexp
https://docs.python.org/3/library/math.html#math.ldexp
https://docs.python.org/3/library/math.html#math.exp
https://docs.python.org/3/library/math.html#math.log
https://docs.python.org/3/library/math.html#math.log10
https://docs.python.org/3/library/math.html#math.pow
https://docs.python.org/3/library/math.html#math.sqrt
https://docs.python.org/3/library/math.html#math.sqrt
https://docs.python.org/3/library/math.html#math.acos
https://docs.python.org/3/library/math.html#math.asin
https://docs.python.org/3/library/math.html#math.atan
https://docs.python.org/3/library/math.html#math.atan2
https://docs.python.org/3/library/math.html#math.ceil
https://docs.python.org/3/library/math.html#math.cos
https://docs.python.org/3/library/math.html#math.hypot
https://docs.python.org/3/library/math.html#math.sin
https://docs.python.org/3/library/math.html#math.cosh
https://docs.python.org/3/library/math.html#math.sinh
https://docs.python.org/3/library/math.html#math.tanh
https://docs.python.org/3/library/math.html#math.e
https://docs.python.org/3/library/math.html#math.pi
https://docs.python.org/3/library/math.html
https://docs.python.org/3/library/cmath.html
https://docs.python.org/3/library/cmath.html#cmath.acos
https://docs.python.org/3/library/cmath.html#cmath.acosh
https://docs.python.org/3/library/cmath.html#cmath.asin
https://docs.python.org/3/library/cmath.html#cmath.asinh
https://docs.python.org/3/library/cmath.html#cmath.atan
https://docs.python.org/3/library/cmath.html#cmath.atanh
https://docs.python.org/3/library/cmath.html#cmath.cos
https://docs.python.org/3/library/cmath.html#cmath.cos
https://docs.python.org/3/library/cmath.html#cmath.cosh
https://docs.python.org/3/library/cmath.html#cmath.exp
https://docs.python.org/3/library/cmath.html#cmath.log
https://docs.python.org/3/library/cmath.html#cmath.log10
https://docs.python.org/3/library/cmath.html#cmath.sin
https://docs.python.org/3/library/cmath.html#cmath.sinh
https://docs.python.org/3/library/cmath.html#cmath.sqrt
https://docs.python.org/3/library/cmath.html#cmath.tan
https://docs.python.org/3/library/cmath.html#cmath.tanh

Python basics, Release 24.1.0

7.1.6 Rounding half to even

Usually Python calculates floating point numbers according to the IEEE 754 standard, rounding down numbers in the
middle half of the time and rounding up in the other half to avoid statistical drift in longer calculations. Decimal and
ROUND_HALF_UP from the decimal module are therefore needed for rounding half to even:

>>> import decimal
>>> num = decimal.Decimal("2.5")
>>> rounded = num.quantize(decimal.Decimal("0"), rounding = decimal.ROUND_HALF_UP)
>>> rounded
Decimal('3')

7.1.7 Numerical calculations

The standard Python installation is not well suited for intensive numerical calculations due to speed limitations. But the
powerful Python extension NumPy provide highly efficient implementations of many advanced numerical operations.
The focus is on array operations, including multi-dimensional matrices and advanced functions such as the fast Fourier
transform.

7.1.8 Built-in modules for numbers

The Python standard library contains a number of built-in modules that you can use to manage numbers:

Module Description
numbers for numeric abstract base classes
math, cmath for mathematical functions for real and complex numbers
decimal for decimal fixed-point and floating-point arithmetic
statistics for functions for calculating mathematical statistics
fractions for rational numbers
random for generating pseudo-random numbers and selections and for shuffling sequences
itertools for functions that create iterators for efficient loops
functools for higher-order functions and operations on callable objects
operator for standard operators as functions

7.2 Lists

Python has a powerful built-in list type:

1 []
2 [1]
3 [1, "2.", 3.0, ["4a", "4b"], (5.1,5.2)]

A list can contain a mixture of other types as elements, including strings, tuples, lists, dictionaries, functions, file
objects and any kind of number.

A list can be indexed from the front or the back. You can also refer to a sub-segment of a list using slice notation:

7.2. Lists 23

https://en.wikipedia.org/wiki/IEEE_754
https://docs.python.org/3/library/decimal.html#decimal.Decimal
https://docs.python.org/3/library/decimal.html#decimal.ROUND_HALF_UP
https://en.wikipedia.org/wiki/Rounding#Rounding_half_to_even
https://www.python4data.science/en/latest/workspace/numpy/index.html
https://docs.python.org/3/library/numbers.html#module-numbers
https://docs.python.org/3/library/math.html#module-math
https://docs.python.org/3/library/cmath.html#module-cmath
https://docs.python.org/3/library/decimal.html#module-decimal
https://docs.python.org/3/library/statistics.html#module-statistics
https://docs.python.org/3/library/fractions.html#module-fractions
https://docs.python.org/3/library/random.html#module-random
https://docs.python.org/3/library/itertools.html#module-itertools
https://docs.python.org/3/library/functools.html#module-functools
https://docs.python.org/3/library/operator.html#module-operator

Python basics, Release 24.1.0

1 >>> x = [1, "2.", 3.0, ["4a", "4b"], (5.1,5.2)]
2 >>> x[0]
3 '1'
4 >>> x[1]
5 '2.'
6 >>> x[-1]
7 (5.1, 5.2)
8 >>> x[-2]
9 ['4a', '4b']

10 >>> x[1:-1]
11 ['2.', 3.0, ['4a', '4b']]
12 >>> x[0:3]
13 [1, '2.', 3.0]
14 >>> x[:3]
15 [1, '2.', 3.0]
16 >>> x[-4:-1]
17 ['2.', 3.0, ['4a', '4b']]
18 >>> x[-4:]
19 ['2.', 3.0, ['4a', '4b'], (5.1, 5.2)]

Lines 2 and 4
Index from the beginning using positive indices starting with 0 as the first element.

Lines 6 and 8
Index from the back using negative indices starting with -1 as the last element.

Lines 10 and 12
Slice with [m:n], where m is the inclusive start point and n is the exclusive end point.

Lines 14, 16 and 18
A [:n] slice starts at the beginning and an [m:] slice goes to the end of a list.

You can use this notation to add, remove and replace elements in a list or to get an element or a new list that is a slice
of it, for example:

1 >>> x = [1, "2.", 3.0, ["4a", "4b"], (5.1,5.2)]
2 >>> x[1] = "zweitens"
3 >>> x[2:3] = []
4 >>> x
5 [1, 'zweitens', ['4a', '4b'], (5.1, 5.2)]
6 >>> x[2] = [3.1, 3.2, 3.3]
7 >>> x
8 [1, 'zweitens', [3.1, 3.2, 3.3], (5.1, 5.2)]
9 >>> x[2:]

10 [[3.1, 3.2, 3.3], (5.1, 5.2)]

Line 3
The size of the list increases or decreases if the new slice is larger or smaller than the slice it replaces.

Slices also allow a step-by-step selection between the start and end indices. The default value for an unspecified stride
is 1, which takes every element from a sequence between the indices. With a stride of 2, every second element is taken
and so on:

1 >>> x[0:3:2]
2 [1, [3.1, 3.2, 3.3]]

(continues on next page)

24 Chapter 7. Data types

Python basics, Release 24.1.0

(continued from previous page)

3 >>> x[::2]
4 [1, [3.1, 3.2, 3.3]]
5 >>> x[1::2]
6 ['zweitens', (5.1, 5.2)]

The stride value can also be negative. A -1 stride means counting from right to left:

1 >>> x[3:0:-2]
2 [(5.1, 5.2), 'zweitens']
3 >>> x[::-2]
4 [(5.1, 5.2), 'zweitens']
5 >>> x[::-1]
6 [(5.1, 5.2), [3.1, 3.2, 3.3], 'zweitens', 1]

Line 1
To use a negative increment, the start slice should be larger than the end slice.

Line 3
The exception is if you omit the start and end indices.

Line 5
A stride of -1 reverses the order.

Some functions of the slice notation can also be executed with special operations, which improves the readability of
the code:

1 >>> x.reverse()
2 >>> x
3 [(5.1, 5.2), [3.1, 3.2, 3.3], 'zweitens', 1]

You can also use the following built-in functions (len, max and min), some operators (in, + and *), the del statement
and the list methods (append, count, extend, index, insert, pop, remove, reverse and sort) for lists:

1 >>> len(x)
2 4
3 >>> x + [0, -1]
4 [(5.1, 5.2), [3.1, 3.2, 3.3], 'zweitens', 1, 0, -1]
5 >>> x.reverse()
6 >>> x
7 [1, 'zweitens', [3.1, 3.2, 3.3], (5.1, 5.2)]

Line 3
The operators + and * each create a new list, leaving the original list unchanged.

Line 5
The methods of a list are called using the attribute notation for the list itself: :samp:`{LIST}.
METHOD(ARGUMENTS).

Some of these operations repeat functions that can be performed using slice notation, but they improve the readability
of the code.

See also:
• Select and filter data with pandas

7.2. Lists 25

https://www.python4data.science/en/latest/workspace/pandas/select-filter.html

Python basics, Release 24.1.0

7.2.1 Summary

data type mutable ordered indexed duplicates
list

7.3 Tuples

Tuples are similar to lists but are immutable, so they cannot be changed once they have been created. The operators
(in, + and *) and built-in functions (len, max and min) work with them in the same way as with lists, as none of these
functions change the original. The index and slice notations work in the same way to get elements or slices, but cannot
be used to add, remove or replace elements. Also, there are only two tuple methods: count and index. An important
purpose of tuples is to be used as keys for dictionaries. They are also more efficient to use when you don’t need a change
facility.

1 ()
2 (1,)
3 (1, 2, 3, 5)
4 (1, "2.", 3.0, ["4a", "4b"], (5.1,5.2))

Line 2
A tuple with one element requires a comma.

Line 4
A tuple, like a Liste, can contain a mixture of other types as elements, including any Numbers, Strings, Tuples,
Lists, Dictionaries, Files and functions.

A list can be converted to a tuple using the built-in tuple function:

>>> x = [1, 2, 3, 5]
>>> tuple(x)
(1, 2, 3, 5)

Conversely, a tuple can be converted into a list using the built-in list function:

>>> x = (1, 2, 3, 4)
>>> list(x)
[1, 2, 3, 4]

The advantages of tuples over Lists are:

• Tuples are faster than lists.

If you want to define a constant set of values and just cycle through them, you should use a tuple instead of a list.

• Tuples can not be modified and are therefore write-protected.

• Tuples can be used as keys in Dictionaries and values in Sets.

26 Chapter 7. Data types

Python basics, Release 24.1.0

7.3.1 Summary

data type mutable ordered indexed duplicates
tuple

7.4 Sets

A set in Python is an unordered collection of objects used in situations where membership and uniqueness to the set
are the most important information of the object. The in operator runs faster with sets than with Lists:

1 >>> x = set([1, 2, 3, 2, 4])
2 >>> x
3 {1, 2, 3, 4}
4 >>> 1 in x
5 True
6 >>> 5 in x
7 False

Line 1
You can create a set by applying set to a sequence like a list.

Line 3
When a sequence is made into a set, duplicates are removed.

Line 4 and 6
The keyword is used to check whether an object belongs to a set.

Sets behave like collections of Dictionary keys without associated values.

However, the speed advantage also comes at a price: sets do not keep the elements elements in the correct order,
whereas Lists and Tuples do. If the order is important to you, you should use a data structure that remembers the order.

7.4.1 Summary

data type mutable ordered indexed duplicates
set

7.5 Dictionaries

Python’s built-in dictionary data type provides associative array functionality implemented using hash tables. The
built-in len function returns the number of key-value pairs in a dictionary. The del statement can be used to delete a
key-value pair. As with Lists , several dictionary methods (clear, copy, get, items, keys, update and values) are
available.

>>> x = {1: "eins", 2: "zwei"}
>>> x[3] = "drei"
>>> x["viertes"] = "vier"

(continues on next page)

7.4. Sets 27

https://docs.python.org/3/library/stdtypes.html#dict.clear
https://docs.python.org/3/library/stdtypes.html#dict.copy
https://docs.python.org/3/library/stdtypes.html#dict.get
https://docs.python.org/3/library/stdtypes.html#dict.items
https://docs.python.org/3/library/stdtypes.html#dict.keys
https://docs.python.org/3/library/stdtypes.html#dict.update
https://docs.python.org/3/library/stdtypes.html#dict.values

Python basics, Release 24.1.0

(continued from previous page)

>>> list(x.keys())
[1, 2, 3, 'viertes']
>>> x[1]
'eins'
>>> x.get(1, "nicht vorhanden")
'eins'
>>> x.get(5, "nicht vorhanden")
'nicht vorhanden'

Keys must be of immutable type, including Numbers, Strings and Tuples.

Warning: Even if you can use different key types in a dictionary, you should avoid this, as it not only makes it
more difficult to read, but also sorting is also made more difficult.

Values can be any type of object, including mutable types such as Lists and Dictionaries. If you try to access the value
of a key that is not in the dictionary, a KeyError exception is thrown. To avoid this error, the dictionary method get
optionally returns a custom value if a key is not contained in a dictionary.

7.5.1 setdefault

setdefault can be used to provide counters for the keys of a dict, for example:

>>> titles = ["Data types", "Lists", "Sets", "Lists"]
>>> for title in titles:
... titles_count.setdefault(title, 0)
... titles_count[title] += 1
...
>>> titles_count
{'Data types': 1, 'Lists': 2, 'Sets': 1}

Note: Such counting operations quickly became widespread, so the collections.Counter class was later added to
the Python standard library. This class can perform the above-mentioned operations much more easily:

>>> collections.Counter(titles)
Counter({'Lists': 2, 'Data types': 1, 'Sets': 1})

7.5.2 Merging dictionaries

You can merge two dictionaries into a single dictionary using the dict.update() method:

>>> titles = {7.0: "Data Types", 7.1: "Lists", 7.2: "Tuples"}
>>> new_titles = {7.0: "Data types", 7.3: "Sets"}
>>> titles.update(new_titles)
>>> titles
{7.0: 'Data types', 7.1: 'Lists', 7.2: 'Tuples', 7.3: 'Sets'}

28 Chapter 7. Data types

https://docs.python.org/3/library/stdtypes.html#dict.setdefault
https://docs.python.org/3/library/collections.html#collections.Counter
https://docs.python.org/3/library/stdtypes.html#dict.update

Python basics, Release 24.1.0

Note: The order of the operands is important, as 7.0 is duplicated and the value of the last key overwrites the previous
one.

7.5.3 Extensions

python-benedict
dict subclass with keylist/keypath/keyattr support and I/O shortcuts.

pandas
can convert Dicts into Series and DataFrames.

7.6 Strings

The processing of character strings is one of Python’s strengths. There are many options for delimiting character strings:

"A string in double quotes can contain 'single quotes'."
'A string in single quotes can contain "double quotes"'
'''\tA string that starts with a tab and ends with a newline character.\n'''
"""This is a string in triple double quotes, the only string that contains
real line breaks.""""

Strings can be separated by single (' '), double (" "), triple single (''' ''') or triple double (""" """) quotes and
can contain tab (\t) and newline (\n) characters. In general, backslashes \ can be used as escape characters. For
example \\ can be used for a single backslash and \' for a single quote, whereby it does not end the string:

"You don't need a backslash here."
'However, this wouldn\'t work without a backslash.'

Here are other characters you can get with the escape character:

Escape sequence Output Description
\\ \ Backslash
\' ' single quote character
\" " double quote character
\b Backspace (BS)
\n ASCII Linefeed (LF)
\r ASCII Carriage Return (CR)
\t Tabulator (TAB)
u00B5 µ Unicode 16 bit
U000000B5 µ Unicode 32 bit
N{SNAKE} Unicode Emoji name

A normal string cannot be split into multiple lines. The following code will not work:

"This is an incorrect attempt to insert a newline into a string without
using \n."

However, Python provides strings in triple quotes (""") that allow this and can contain single and double quotes without
backslashes.

7.6. Strings 29

https://github.com/fabiocaccamo/python-benedict
https://www.python4data.science/en/latest/workspace/pandas/python-data-structures.html

Python basics, Release 24.1.0

Strings are also immutable. The operators and functions that work with them return new strings derived from the
original. The operators (in, + and *) and built-in functions (len, max and min) work with strings in the same way as
with lists and tuples.

>>> welcome = "Hello pythonistas!\n"
>>> 2 * welcome
'Hello pythonistas!\nHello pythonistas!\n'
>>> welcome + welcome
'Hello pythonistas!\nHello pythonistas!\n'
>>> 'python' in welcome
True
>>> max(welcome)
'y'
>>> min(welcome)
'\n'

The index and slice notation works in the same way to obtain elements or slices:

>>> welcome[0:5]
'Hello'
>>> welcome[6:-1]
'pythonistas!'

However, the index and slice notation cannot be used to add, remove or replace elements:

>>> welcome[6:-1] = 'everybody!'
Traceback (most recent call last):
File "<stdin>", line 1, in <module>

TypeError: 'str' object does not support item assignment

7.6.1 string

For strings, the standard Python library string contains several methods for working with their content, including str.
split(), str.replace() and str.strip():

>>> welcome = "hello pythonistas!\n"
>>> welcome.isupper()
False
>>> welcome.isalpha()
False
>>> welcome[0:5].isalpha()
True
>>> welcome.capitalize()
'Hello pythonistas!\n'
>>> welcome.title()
'Hello Pythonistas!\n'
>>> welcome.strip()
'Hello pythonistas!'
>>> welcome.split(' ')
['hello', 'pythonistas!\n']
>>> chunks = [snippet.strip() for snippet in welcome.split(' ')]
>>> chunks
['hello', 'pythonistas!']

(continues on next page)

30 Chapter 7. Data types

https://docs.python.org/3/library/string.html
https://docs.python.org/3/library/stdtypes.html#str.split
https://docs.python.org/3/library/stdtypes.html#str.split
https://docs.python.org/3/library/stdtypes.html#str.replace
https://docs.python.org/3/library/stdtypes.html#str.strip

Python basics, Release 24.1.0

(continued from previous page)

>>> ' '.join(chunks)
'hello pythonistas!'
>>> welcome.replace('\n', '')
'hello pythonistas!'

Below you will find an overview of the most common string methods:

Method Description
str.count() returns the number of non-overlapping occurrences of the string.
str.endswith() returns True if the string ends with the suffix.
str.startswith() returns True if the string starts with the prefix.
str.join() uses the string as a delimiter for concatenating a sequence of other strings.
str.index() returns the position of the first character in the string if it was found in the string; triggers

a ValueError if it was not found.
str.find() returns the position of the first character of the first occurrence of the substring in the

string; like index, but returns -1 if nothing was found.
str.rfind() Returns the position of the first character of the last occurrence of the substring in the

string; returns -1 if nothing was found.
str.replace() replaces occurrences of a string with another string.
str.strip(), str.
rstrip(), str.
lstrip()

strip spaces, including line breaks.

str.split() splits a string into a list of substrings using the passed separator.
str.lower() converts alphabetic characters to lower case.
str.upper() converts alphabetic characters to upper case.
str.casefold() converts characters to lower case and converts all region-specific variable character

combinations to a common comparable form.
str.ljust(), str.
rjust()

left-aligned or right-aligned; fills the opposite side of the string with spaces (or another
filler character) in order to obtain a character string with a minimum width.

str.removeprefix()
str.removesuffix()

In Python 3.9 this can be used to extract the suffix or file name.

In addition, there are several methods with which the property of a character string can be checked:

Method [!#$%...] [a-zA-Z] [¼½¾] [123] [0-9]

str.isprintable()
str.isalnum()
str.isnumeric()
str.isdigit()
str.isdecimal()

str.isspace() checks for spaces: [\t\n\r\f\v\x1c-\x1f\x85\xa0\u1680...].

7.6. Strings 31

https://docs.python.org/3/library/stdtypes.html#string-methods
https://docs.python.org/3/library/stdtypes.html#str.count
https://docs.python.org/3/library/stdtypes.html#str.endswith
https://docs.python.org/3/library/stdtypes.html#str.startswith
https://docs.python.org/3/library/stdtypes.html#str.join
https://docs.python.org/3/library/stdtypes.html#str.index
https://docs.python.org/3/library/stdtypes.html#str.find
https://docs.python.org/3/library/stdtypes.html#str.rfind
https://docs.python.org/3/library/stdtypes.html#str.replace
https://docs.python.org/3/library/stdtypes.html#str.strip
https://docs.python.org/3/library/stdtypes.html#str.rstrip
https://docs.python.org/3/library/stdtypes.html#str.rstrip
https://docs.python.org/3/library/stdtypes.html#str.lstrip
https://docs.python.org/3/library/stdtypes.html#str.lstrip
https://docs.python.org/3/library/stdtypes.html#str.split
https://docs.python.org/3/library/stdtypes.html#str.lower
https://docs.python.org/3/library/stdtypes.html#str.upper
https://docs.python.org/3/library/stdtypes.html#str.casefold
https://docs.python.org/3/library/stdtypes.html#str.ljust
https://docs.python.org/3/library/stdtypes.html#str.rjust
https://docs.python.org/3/library/stdtypes.html#str.rjust
https://docs.python.org/3/library/stdtypes.html#str.removeprefix
https://docs.python.org/3/library/stdtypes.html#str.removesuffix
https://docs.python.org/3/library/stdtypes.html#str.isprintable
https://docs.python.org/3/library/stdtypes.html#str.isalnum
https://docs.python.org/3/library/stdtypes.html#str.isnumeric
https://docs.python.org/3/library/stdtypes.html#str.isdigit
https://docs.python.org/3/library/stdtypes.html#str.isdecimal
https://docs.python.org/3/library/stdtypes.html#str.isspace

Python basics, Release 24.1.0

7.6.2 re

The Python standard library re also contains functions for working with strings. However, re offers more sophisticated
options for pattern extraction and replacement than string.

>>> import re
>>> re.sub('\n', '', welcome)
'Hello pythonistas!'

Here, the regular expression is first compiled and then its re.Pattern.sub() method is called for the passed text.
You can compile the expression itself with re.compile() to create a reusable regex object that reduces CPU cycles
when applied to different strings:

>>> regex = re.compile('\n')
>>> regex.sub('', welcome)
'Hello pythonistas!'

If you want to get a list of all patterns that match the regex object instead, you can use the re.Pattern.findall()
method:

>>> regex.findall(welcome)
['\n']

Note: To avoid the awkward escaping with \ in a regular expression, you can use raw string literals such as r'C:\
PATH\TO\FILE' instead of the corresponding 'C:\\PATH\\TO\\FILE'.

re.Pattern.match() and re.Pattern.search() are closely related to re.Pattern.findall(). While findall
returns all matches in a string, search only returns the first match and match only returns matches at the beginning
of the string. As a less trivial example, consider a block of text and a regular expression that can identify most email
addresses:

>>> addresses = """Veit <veit@cusy.io>
... Veit Schiele <veit.schiele@cusy.io>
... cusy GmbH <info@cusy.io>
... """
>>> pattern = r'[A-Z0-9._%+-]+@[A-Z0-9.-]+\.[A-Z]{2,4}'
>>> regex = re.compile(pattern, flags=re.IGNORECASE)
>>> regex.findall(addresses)
['veit@cusy.io', 'veit.schiele@cusy.io', 'info@cusy.io']
>>> regex.search(addresses)
<re.Match object; span=(6, 18), match='veit@cusy.io'>
>>> print(regex.match(addresses))
None

regex.match returns None, as the pattern only matches if it is at the beginning of the string.

Suppose you want to find email addresses and at the same time split each address into its three components:

1. personal name

2. domain name

3. domain suffix

To do this, you first place round brackets () around the parts of the pattern to be segmented:

32 Chapter 7. Data types

https://docs.python.org/3/library/re.html
https://docs.python.org/3/library/re.html#re.Pattern.sub
https://docs.python.org/3/library/re.html#re.compile
https://docs.python.org/3/library/re.html#re.Pattern.findall
https://docs.python.org/3/library/re.html#re.Pattern.match
https://docs.python.org/3/library/re.html#re.Pattern.search
https://docs.python.org/3/library/re.html#re.Pattern.findall

Python basics, Release 24.1.0

>>> pattern = r'([A-Z0-9._%+-]+)@([A-Z0-9.-]+)\.([A-Z]{2,4})'
>>> regex = re.compile(pattern, flags=re.IGNORECASE)
>>> match = regex.match('veit@cusy.io')
>>> match.groups()
('veit', 'cusy', 'io')

re.Match.groups() returns a Tuples that contains all subgroups of the match.

re.Pattern.findall() returns a list of tuples if the pattern contains groups:

>>> regex.findall(addresses)
[('veit', 'cusy', 'io'), ('veit.schiele', 'cusy', 'io'), ('info', 'cusy', 'io')]

Groups can also be used in re.Pattern.sub() where \1 stands for the first matching group, \2 for the second and
so on:

>>> regex.findall(addresses)
[('veit', 'cusy', 'io'), ('veit.schiele', 'cusy', 'io'), ('info', 'cusy', 'io')]
>>> print(regex.sub(r'Username: \1, Domain: \2, Suffix: \3', addresses))
Veit <Username: veit, Domain: cusy, Suffix: io>
Veit Schiele <Username: veit.schiele, Domain: cusy, Suffix: io>
cusy GmbH <Username: info, Domain: cusy, Suffix: io>

The following table contains a brief overview of methods for regular expressions:

Method Description
re.
findall()

returns all non-overlapping matching patterns in a string as a list.

re.
finditer()

like findall, but returns an iterator.

re.
match()

matches the pattern at the beginning of the string and optionally segments the pattern components
into groups; if the pattern matches, a match object is returned, otherwise none.

re.
search()

searches the string for matches to the pattern; in this case, returns a match object; unlike match, the
match can be anywhere in the string and not just at the beginning.

re.
split()

splits the string into parts each time the pattern occurs.

re.sub(),
re.subn()

replaces all (sub) or the first n occurrences (subn) of the pattern in the string with a replacement
expression; uses the symbols \1, \2, . . . to refer to the elements of the match group.

See also:
• Regular expressions

• Regular Expression HOWTO

• re — Regular expression operations

7.6. Strings 33

https://docs.python.org/3/library/re.html#re.Match.groups
https://docs.python.org/3/library/re.html#re.Pattern.findall
https://docs.python.org/3/library/re.html#re.Pattern.sub
https://docs.python.org/3/library/re.html#re.findall
https://docs.python.org/3/library/re.html#re.findall
https://docs.python.org/3/library/re.html#re.finditer
https://docs.python.org/3/library/re.html#re.finditer
https://docs.python.org/3/library/re.html#re.match
https://docs.python.org/3/library/re.html#re.match
https://docs.python.org/3/library/re.html#re.search
https://docs.python.org/3/library/re.html#re.search
https://docs.python.org/3/library/re.html#re.split
https://docs.python.org/3/library/re.html#re.split
https://docs.python.org/3/library/re.html#re.sub
https://docs.python.org/3/library/re.html#re.subn
https://docs.python.org/3/howto/regex.html
https://docs.python.org/3/library/re.html

Python basics, Release 24.1.0

7.6.3 print()

The function print() outputs character strings, whereby other Python data types can easily be converted into strings
and formatted, for example:

>>> import math
>>> pi = math.pi
>>> d = 28
>>> u = pi * d
>>> print("Pi is", pi, "and the circumference with a diameter of", d, "inches is", u,
→˓"inches.")
Pi is 3.141592653589793 and the circumference with a diameter of 28 inches is 87.
→˓96459430051421 inches.

F-Strings

F-strings can be used to shorten numbers that are too detailed for a text:

>>> print(f"The value of Pi is {pi:.3f}.")
The value of Pi is 3.142.

In {pi:.3f}, the format specification f is used to truncate the number Pi to three decimal places.

In A/B test scenarios, you often want to display the percentage change in a key figure. F strings can be used to formulate
them in an understandable way:

>>> metrics = 0.814172
>>> print(f"The AUC has increased to {metrics:=+7.2%}")
The AUC has increased to +81.42%

In this example, the variable metrics is formatted with = taking over the contents of the variable after the +, displaying
a total of seven characters including the plus or minus sign, metrics and the percent sign. .2 provides two decimal
places, while the % symbol converts the decimal value into a percentage. For example, 0.514172 is converted to
+51.42%.

Values can also be converted into binary and hexadecimal values:

>>> block_size = 192
>>> print(f"Binary block size: {block_size:b}")
Binary block size: 11000000
>>> print(f"Hex block size: {block_size:x}")
Hex block size: c0

There are also formatting specifications that are ideally suited for CLI (Command Line Interface) output, for example:

>>> data_types = [(7, "Data types", 19), (7.1, "Numbers", 19), (7.2, "Lists", 23)]
>>> for n, title, page in data_types:
... print(f"{n:.1f} {title:.<25} {page: >3}") ...
7.0 Data types............... 19
7.1 Numbers.................. 19
7.2 Lists.................... 23

In general, the format is as follows, whereby all information in square brackets is optional:

:[[FILL]ALIGN][SIGN][0b|0o|0x|d|n][0][WIDTH][GROUPING]["." PRECISION][TYPE]

34 Chapter 7. Data types

https://docs.python.org/3/library/functions.html#print

Python basics, Release 24.1.0

The following table lists the fields for character string formatting and their meaning:

7.6. Strings 35

Python basics, Release 24.1.0

Field Meaning
FILL Character used to fill in ALIGN. The default value is a

space.
ALIGN Text alignment and fill character:

<: left-aligned
>: right-aligned
^: centred
=: Fill character after SIGN

SIGN Display sign:

+: Display sign for positive and negative numbers
-: Default value, - only for negative numbers or space
for positive

0b|0o|0x|d|n Sign for integers:

0b: Binary numbers
0o: Octal numbers
0x: Hexadecimal numbers
d: Default value, decimal integer with base 10
n: uses the current locale setting to insert the
corresponding number separators

0 fills with zeros
WIDTH Minimum field width
GROUPING Number separator:1

,: comma as thousands separator
_: underscore for thousands separator

.PRECISION

For floating point numbers, the number of digits after
the point
For non-numeric values, the maximum length

TYPE Output format as number type or string
. . . for integers:

b: binary format
c: converts the integer to the corresponding Unicode
character
d: default value, decimal character
n: same as d, th the difference that it uses the current
locale setting to insert the corresponding number
separators
o: octal format
x: Hexadecimal format in base 16, using lowercase
letters for the digits above 9
X: Hexadecimal format based on 16, using capital
letters for digits above 9

. . . for floating point numbers:

e: Exponent with e as separator between coefficient
and exponent
E: Exponent with E as separator between coefficient and
exponent
g: Standard value for floating point numbers, whereby
the exponent has a fixed width for large and small
numbers
G: Like g, but changes to E if the number becomes too
large. The representations of infinity and NaN are also
written in capital letters
n: Like g with the difference that it uses the current
locale setting to insert the corresponding number
separators
%: Percentage. Multiplies the number by 100 and
displays it in the fixed format f followed by a percent
sign

36 Chapter 7. Data types

Python basics, Release 24.1.0

Tip: A good source for F-strings is the help function:

>>> help()
help> FORMATTING
...

You can browse through the help here and find many examples.

You can exit the help function again with :–q and .

See also:
• PyFormat

• f-strings

• PEP 498

Debugging F-Strings

In Python 3.8, a specifier was introduced to help with debugging F-string variables. By adding an equals sign =, the
code is included within the F-string:

>>> uid = "veit"
>>> print(f"My name is {uid.capitalize()=}")
My name is uid.capitalize()='Veit'

Formatting date and time formats and IP addresses

datetime supports the formatting of strings using the same syntax as the strftime method for these objects.

>>> import datetime
>>> today = datetime.date.today()
>>> print(f"Today is {today:%d %B %Y}.")
Today is 26 November 2023.

The ipaddress module of Python also supports the formatting of IPv4Address and IPv6Address objects.

Finally, third-party libraries can also add their own support for formatting strings by adding a __format__ method to
their objects.

See also:
• strftime() and strptime() Format Codes

• Python strftime cheatsheet
1 The format identifier n formats a number in a locally customised way, for example:

>>> value = 635372
>>> import locale
>>> locale.setlocale(locale.LC_NUMERIC, "en_US.utf-8")
'en_US.utf-8'
>>> print(f"{value:n}")
635,372

7.6. Strings 37

https://pyformat.info
https://docs.python.org/3/reference/lexical_analysis.html#f-strings
https://peps.python.org/pep-0498/
https://docs.python.org/3/library/datetime.html#module-datetime
https://docs.python.org/3/library/datetime.html#datetime.datetime.strftime
https://docs.python.org/3/library/ipaddress.html#module-ipaddress
https://docs.python.org/3/library/datetime.html#format-codes
https://strftime.org

Python basics, Release 24.1.0

7.6.4 Built-in modules for strings

The Python standard library contains a number of built-in modules that you can use to manage strings:

Module Description
string compares with constants such as string.digits or string.whitespace
re searches and replaces text with regular expressions
struct interprets bytes as packed binary data
difflib helps to calculate deltas, find differences between strings or sequences and create patches and diff files
textwrap wraps and fills text, formats text with line breaks or spaces

See also:
• Manipulation of strings with pandas

7.7 Files

7.7.1 Opening files

In Python, you open and read a file using the built-in open() function and various built-in read operations. The
following short Python program reads a line from a text file called myfile.txt:

>>> f = open("docs/types/myfile.txt", "r")
>>> line = f.readline()

open() does not read anything from the file, but returns a so-called file object that you can use to access the open file.
It keeps track of a file and how much of the file has been read or written. All file input in Python is done with file
objects, not file names.

The first call to readline returns the first line of the file object, which is everything up to and including the first line
break, or the entire file if there is no line break in the file; the next call to readline returns the second line if it exists,
and so on.

The first argument of the open function is a pathname. In the previous example, you open a file that you assume is in the
current working directory. The following example opens a file in an absolute location – C:\My Documents\myfile:

>>> import os
>>> pathname = os.path.join("C:/", "Users", "Veit", "Documents", "myfile.txt")
>>> with open(pathname, "r") as f:
... line = f.readline()

Note: This example uses the with keyword, which means that the file is opened with a context manager, which is
explained in more detail in Context management with with. This way of opening files manages possible I/O errors
better and should generally be preferred.

38 Chapter 7. Data types

https://docs.python.org/3/library/string.html#module-string
https://docs.python.org/3/library/string.html#string.digits
https://docs.python.org/3/library/string.html#string.whitespace
https://docs.python.org/3/library/re.html#module-re
https://docs.python.org/3/library/struct.html#module-struct
https://docs.python.org/3/library/difflib.html#module-difflib
https://docs.python.org/3/library/textwrap.html#module-textwrap
https://www.python4data.science/en/latest/workspace/pandas/string-manipulation.html
https://docs.python.org/3/library/functions.html#open
https://docs.python.org/3/library/functions.html#open
https://docs.python.org/3/library/readline.html#module-readline

Python basics, Release 24.1.0

7.7.2 Closing files

After all data has been read from or written to a file object, the file object should be closed again to free up system
resources, allow other code to read or write to the underlying file, and make the program more reliable overall. For
small scripts, this usually does not have a large impact because file objects are automatically closed when the script
or program exits. However, for larger programs, too many open file objects can exhaust system resources, causing the
program to terminate. You close a file object with the close method when the file object is no longer needed:

>>> f = open("docs/types/myfile.txt", "r")
>>> line = f.readline()
>>> f.close()

However, using a Context management with with usually remains the better option to automatically close files when
you are done:

>>> with open("docs/types/myfile.txt", "r") as f:
... line = f.readline()

7.7.3 Opening files in write or other modes

The second argument of the open() function is a string that specifies how the file should be opened. "r" opens the
file for reading, "w" opens the file for writing, and "a" opens the file for attaching. If you want to open the file for
reading, you can omit the second argument, because "r" is the default value. The following short program writes Hi,
Pythonistas! to a file:

>>> f = open("docs/types/myfile.txt", "w")
>>> f.write("Hi, Pythonistas!\n")
17
>>> f.close()

Depending on the operating system, open() may also have access to other file modes. However, these modes are not
necessary for most purposes.

open can take an optional third argument that defines how read or write operations for this file are buffered. Buffering
keeps data in memory until enough data has been requested or written to justify the time required for a disk access.
Other parameters for open control the encoding for text files and the handling of line breaks in text files. Again, you
don’t usually need to worry about these functions, but as you become more advanced with Python you may want to
read up on them.

7.7.4 Read and write functions

I have already introduced the most common function for reading text files, readline. This function reads a single line
from a file object and returns it, including all line breaks at the end of the line. If there is nothing more to read, readline
returns an empty string, which makes it easy to determine, for example, the number of lines in a file:

>>> f = open("docs/types/myfile.txt", "r")
>>> lc = 0
>>> while f.readline() != "":
... lc = lc + 1
...
>>> print(lc)
1
>>> f.close()

7.7. Files 39

https://docs.python.org/3/library/functions.html#open
https://docs.python.org/3/library/functions.html#open
https://docs.python.org/3/library/readline.html#module-readline

Python basics, Release 24.1.0

A shorter way to count all lines is with the readlines method, which is also built in, that reads all lines of a file and
returns them as a list of strings with one string per line:

>>> f = open("docs/types/myfile.txt", "r")
>>> print(len(f.readlines()))
1
>>> f.close()

If you count all the lines in a large file, this method may cause the memory to fill up because the entire file is read at
once. It is also possible that memory overflows with readline if you try to read a line from a large file that does not
contain newline characters. To better deal with such situations, both methods have an optional argument that affects
the amount of data read at a time. Another way to iterate over all the lines in a file is to treat the file object as an iterator
in a for loop:

>>> f = open("docs/types/myfile.txt", "r")
>>> lc = 0
>>> for l in f:
... lc = lc + 1
...
>>> print(lc)
1
>>> f.close()

This method has the advantage that the lines are read into the memory as needed, so that even with large files there is
no need to fear a lack of memory. The other advantage of this method is that it is simpler and more readable.

However, a possible problem with the read method can arise when conversions are done in text mode on Windows and
macOS if you use the open() command in text mode, that is without appending a b. In text mode on macOS, each \r
is converted to \n, while on Windows, \r\n pairs are converted to \n. You can specify how line breaks are handled
by using the newline parameter when opening the file and specifying newline="\n", \r or \r\n, which will cause
only that string to be used as a line break:

>>> f = open("docs/types/myfile.txt", "r", newline="\n")

In this example, only \n is considered a line break. However, if the file was opened in binary mode, the newline
parameter is not necessary, as all bytes are returned exactly as they are in the file.

The write methods corresponding to readline and readlines are write and writelines. Note that there is no
writeline function. write writes a single string that can span multiple lines if newline characters are embedded in
the string, as in the following example:

f.write("Hi, Pythinistas!\n\n")

The writelines method is confusing, however, because it does not necessarily write multiple lines; it takes a list of
strings as an argument and writes them sequentially to the specified file object without inserting line breaks between
the list items; only if the strings in the list contain line breaks are line breaks added to the file object; otherwise they
are concatenated. writelines is thus the exact inverse of readlines, since it can be applied to the list returned by
readlines to write a file identical to the source file. Assuming that myfile.txt exists and is a text file, the following
example creates an exact copy of myfile.txt named myfile2.txt:

>>> input_file = open("myfile.txt", "r")
>>> lines = input_file.readlines()
>>> input_file.close()
>>> output_file = open("myfile2.txt", "w")
>>> output_file.writelines(lines)
>>> output_file.close()

40 Chapter 7. Data types

https://docs.python.org/3/library/readline.html#module-readline
https://docs.python.org/3/library/functions.html#open

Python basics, Release 24.1.0

Using binary mode

If you want to read all the data in a file (partially) into a single byte object and transfer it to memory to be treated as
a byte sequence, you can use the read method. Without an argument, it reads the entire file from the current position
and returns the data as a byte object. With an integer argument, it reads a maximum of this number of bytes and returns
a bytes object of the specified size:

1 >>> f = open("myfile.txt", "rb")
2 >>> head = f.read(16)
3 >>> print(head)
4 b'Hi, Pythonistas!'
5 >>> body = f.read()
6 >>> print(body)
7 b'\n\n'
8 >>> f.close()

Line 1
opens a file for reading in binary mode

Line 2
reads the first 16 bytes as head string

Line 3
outputs the head string

Line 5
reads the rest of the file

Note: Files opened in binary mode work only with bytes and not with strings. To use the data as strings, you must
decode all byte objects into string objects. This point is often important when dealing with network protocols, where
data streams often behave like files, but must be interpreted as bytes and not strings.

7.7.5 Built-in modules for files

The Python standard library contains a number of built-in modules that you can use to manage files:

7.7. Files 41

Python basics, Release 24.1.0

Module Description
os.path performs common pathname manipulations
pathlib manipulates pathnames
fileinput iterates over multiple input files
filecmp compares files and directories
tempfile creates temporary files and directories
glob, fnmatch use UNIX-like path and file name patterns
linecache randomly accesses lines of text
shutil performs higher level file operations
mimetypes Assignment of file names to MIME types
pickle, shelve enable Python object serialisation and persistence, see

also The pickle module
csv reads and writes CSV files
json JSON encoder and decoder
sqlite3 provides a DB-API 2.0 interface for SQLite databases, see

also The sqlite module
xml, xml.parsers.expat, xml.dom, xml.sax, xml.
etree.ElementTree

reads and writes XML files, see also R:doc:../save-
data/xml

html.parser, html.entities Parsing HTML and XHTML
configparser reads and writes Windows-like configuration files (.ini)
base64, binhex, binascii, quopri, uu encodes/decodes files or streams
struct reads and writes structured data to and from files
zlib, gzip, bz2, zipfile, tarfile for working with archive files and compressions

See also:
• pandas IO tools

• Examples of serialisation formats CSV, JSON, Excel, XML/HTML, YAML, TOML und Pickle.

7.8 None

In addition to the standard types such as Strings and Numbers, Python has a special data type that defines a single
special data object called None. As the name suggests, None is used to represent an empty value. It appears in various
forms in Python.

None is often useful in everyday Python programming as a placeholder to indicate a data structure where meaningful
data can eventually be found, even if that data has not yet been calculated.

The presence of None is easy to check, as there is only one instance of None in Python (all references to None point to
the same object), and None is only identical to itself:

>>> MyType = type(None)
>>> MyType() is None
True

42 Chapter 7. Data types

https://docs.python.org/3/library/os.path.html#module-os.path
https://docs.python.org/3/library/pathlib.html#module-pathlib
https://docs.python.org/3/library/fileinput.html#module-fileinput
https://docs.python.org/3/library/filecmp.html#module-filecmp
https://docs.python.org/3/library/tempfile.html#module-tempfile
https://docs.python.org/3/library/glob.html#module-glob
https://docs.python.org/3/library/fnmatch.html#module-fnmatch
https://docs.python.org/3/library/linecache.html#module-linecache
https://docs.python.org/3/library/shutil.html#module-shutil
https://docs.python.org/3/library/mimetypes.html#module-mimetypes
https://docs.python.org/3/library/pickle.html#module-pickle
https://docs.python.org/3/library/shelve.html#module-shelve
https://docs.python.org/3/library/csv.html#module-csv
https://docs.python.org/3/library/json.html#module-json
https://docs.python.org/3/library/sqlite3.html#module-sqlite3
https://docs.python.org/3/library/xml.html#module-xml
https://docs.python.org/3/library/pyexpat.html#module-xml.parsers.expat
https://docs.python.org/3/library/xml.dom.html#module-xml.dom
https://docs.python.org/3/library/xml.sax.html#module-xml.sax
https://docs.python.org/3/library/xml.etree.elementtree.html#module-xml.etree.ElementTree
https://docs.python.org/3/library/xml.etree.elementtree.html#module-xml.etree.ElementTree
https://docs.python.org/3/library/html.parser.html#module-html.parser
https://docs.python.org/3/library/html.entities.html#module-html.entities
https://docs.python.org/3/library/configparser.html#module-configparser
https://docs.python.org/3/library/base64.html#module-base64
https://docs.python.org/3/library/binascii.html#module-binascii
https://docs.python.org/3/library/quopri.html#module-quopri
https://docs.python.org/3/library/uu.html#module-uu
https://docs.python.org/3/library/struct.html#module-struct
https://docs.python.org/3/library/zlib.html#module-zlib
https://docs.python.org/3/library/gzip.html#module-gzip
https://docs.python.org/3/library/bz2.html#module-bz2
https://docs.python.org/3/library/zipfile.html#module-zipfile
https://docs.python.org/3/library/tarfile.html#module-tarfile
https://www.python4data.science/en/latest/data-processing/pandas-io.html
https://www.python4data.science/en/latest/data-processing/serialisation-formats/csv/example.html
https://www.python4data.science/en/latest/data-processing/serialisation-formats/json/example.html
https://www.python4data.science/en/latest/data-processing/serialisation-formats/excel.html
https://www.python4data.science/en/latest/data-processing/serialisation-formats/xml-html/index.html
https://www.python4data.science/en/latest/data-processing/serialisation-formats/yaml/example.html
https://www.python4data.science/en/latest/data-processing/serialisation-formats/toml/example.html
https://www.python4data.science/en/latest/data-processing/serialisation-formats/pickle/pickle-examples.html

Python basics, Release 24.1.0

7.8.1 None is falsy

In Python, we often rely on the fact that None is falsy:

>>> bool(None)
False

For example, we can check whether Strings are empty in an if statement:

>>> myval = ""
>>> if not myval:
... print("No value was specified.")
...
No value was specified.

7.8.2 None stands for emptiness

>>> titles = {7.0: "Data Types", 7.1: "Lists", 7.2: "Tuples"}
>>> third_title = titles.get("7.3")
>>> print(third_title)
None

7.8.3 The default return value of a function is None

For example, a procedure in Python is just a function that does not explicitly return a value, which means that it returns
None by default:

>>> def myfunc():
... pass
...
>>> print(myfunc())
None

7.8. None 43

Python basics, Release 24.1.0

44 Chapter 7. Data types

CHAPTER

EIGHT

INPUT

You can use the input() function to get data input. Use the prompt string you want to display as a parameter for
input:

>>> first_name = input("First name? ")
First name? Veit
>>> surname = input("Surname? ")
Surname? Schiele
>>> print(first_name, surname)
Veit Schiele

This is a fairly simple way to get data input. The only catch is that the input comes in as a string. So if you want to use
a number, you have to convert it with the int or float function, for example, for calculating the age from the year of
birth:

>>> import datetime
>>>
>>> currentDateTime = datetime.datetime.now()
>>> year = currentDateTime.year
>>> year_birth = input("Year of birth? ")
Year of birth? 1964
>>> age = year - int(year_birth)
>>> print('Age:', age, 'years')
Age: 58 years

45

https://docs.python.org/3/library/functions.html#input
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float

Python basics, Release 24.1.0

46 Chapter 8. Input

CHAPTER

NINE

CONTROL FLOWS

Python has a whole range of structures for controlling code execution and programme flow, including common branches
and loops.

9.1 Boolean values and expressions

In Python, there are several ways to express Boolean values; the Boolean constant False, 0, the Python value None, and
empty values (for example, the empty list [] or the empty string "") are all considered False. The Boolean constant
True and everything else is considered True.

<, <=, ==, >, >=
compares values.

is, is not, in, not in
checks the identity.

and, not, or
are logical operators that can be used to link the above checks.

>>> x = 3
>>> y = 3.0
>>> z = [3, 4, 5]
>>> x == y
True
>>> x is y
False
>>> x is not y
True
>>> x in z
True
>>> id(x)
4375911432
>>> id(y)
4367574480
>>> id(z[0])
4375911432

If x and z[0] have the same ID in memory, this means that we are referring to the same object in two places.

Most frequently, is and is not are used in conjunction with None:

47

Python basics, Release 24.1.0

>>> x is None
False
>>> x is not None
True

The Python style guide in PEP 8 says that you should use identity to compare with None. So you should never use x
== None, but enter x is None instead.

However, you should never compare calculated floating point numbers with each other:

>>> u = 0.6 * 7
>>> v = 0.7 * 6
>>> u == v
False
>>> u
4.2
>>> v
4.199999999999999

9.2 if-elif-else statement

The code block after the first true condition of an if or elif statement is executed. If none of the conditions are true,
the code block after the else is executed:

1 >>> x = 1
2 >>> if x < 1:
3 ... x = 2
4 ... y = 3
5 ... elif x > 1:
6 ... x = 4
7 ... y = 5
8 ... else:
9 ... x = 6

10 ... y = 7
11 ...
12 >>> print(x, y)
13 6 7

Lines 5 and 8
The elif and else clauses are optional, and there can be any number of elif clauses.

Lines 3, 4, 6, 7, 9 and 10
Python uses indentations to delimit blocks. No explicit delimiters such as brackets or curly braces are required.
Each block consists of one or more statements separated by line breaks. All these statements must be on the same
indentation level.

48 Chapter 9. Control flows

https://peps.python.org/pep-0008/

Python basics, Release 24.1.0

9.3 Loops

9.3.1 while loop

The while loop is executed as long as the condition (here: x > y) is true:

1 >>> x, y = 6, 3
2 >>> while x > y:
3 ... x -= 1
4 ... if x == 4:
5 ... break
6 ... print(x)
7 ...
8 5

Line 1
This is a shorthand notation where x is given the value 6 and y is given the value 3.

Lines 2–10
This is the while loop with the statement x > y, which is true as long as x is greater than y.

Line 3
x is reduced by 1.

Line 4
if condition where x is to be exactly 4.

Line 5
break ends the loop.

Lines 8 and 9
outputs the results of the while loop before execution was interrupted with break.

1 >>> x, y = 6, 3
2 >>> while x > y:
3 ... x -= 1
4 ... if x == 4:
5 ... continue
6 ... print(x)
7 ...
8 5
9 3

Line 5
continue terminates the current iteration of the loop.

9.3. Loops 49

Python basics, Release 24.1.0

9.3.2 for loop

The for loop is simple but powerful because it can iterate over any iterable type, such as a list or a tuple. Unlike many
other languages, the for loop in Python iterates over every element in a sequence for example a list or a tuple), which
makes it more like a foreach loop. The following loop uses the Modulo operator % as a condition for the first occurrence
of an integer divisible by 5:

1 >>> items = [1, "fünf", 5.0, 10, 11, 15]
2 >>> d = 5
3 >>> for i in items:
4 ... if not isinstance(i, int):
5 ... continue
6 ... if not i % d:
7 ... print(f"First integer found that is divisible by {d}: {i}")
8 ... break
9 ...

10 First integer found that is divisible by 5: 10

x is assigned each value in the list in turn. If x is not an integer, the remainder of this iteration is aborted by the continue
statement. The flow control is continued with x being set to the next entry in the list. After the first matching integer is
found, the loop is terminated with the break statement.

9.3.3 Loops with an index

You can also output the index in a for loop, for example with enumerate():

>>> data_types = ["Data types", "Numbers", "Lists"]
>>> for index, title in enumerate(data_types):
... print(index, title)
...
0 Data types
1 Numbers
2 Lists

9.3.4 List Comprehensions

A list is usually generated as follows:

>>> squares = []
>>> for i in range(8):
... squares.append(i ** 2)
...
>>> squares
[0, 1, 4, 9, 16, 25, 36, 49]

Instead of creating an empty list and inserting each element at the end, with list comprehensions you simply define the
list and its content at the same time with just a single line of code:

>>> squares = [i ** 2 for i in range(8)]
>>> squares
[0, 1, 4, 9, 16, 25, 36, 49]

50 Chapter 9. Control flows

https://en.wikipedia.org/wiki/Modulo_operation
https://docs.python.org/3/library/functions.html#enumerate

Python basics, Release 24.1.0

The general format for this is:

NEW_LIST = [EXPRESSION for MEMBER in ITERABLE]

Each list comprehension in Python contains three elements:

EXPRESSION
is a call to a method or another valid expression that returns a value. In the example above, the expression i **
2 is the square of the respective member value.

MEMBER
is the object or the value in an ITERABLE. In the example above, the value is i.

ITERABLE
is a list, a set, a generator or another object that can return its elements individually. In the example above, the
iterable is range(8).

You can also use optional conditions with list comprehensions, which are usually appended to the end of the expression:

>>> squares = [i ** 2 for i in range(8) if i >= 4]
>>> squares
[16, 25, 36, 49]

9.4 Exceptions

This section is about exceptions, that is, language functions that specifically handle unusual circumstances during the
execution of a programme. The most common exception is to handle errors, but they can also be used effectively for
many other purposes. Python provides a comprehensive set of exceptions, and you can define new exceptions for your
own purposes.

The entire exception mechanism in Python is object-oriented: An exception is an object that is automatically created
by Python functions with a raise statement. This raise statement causes the Python programme to be executed in
a different way than usually intended: The current call chain is searched for a handler that can handle the generated
exception. If such a handler is found, it is called and can access the exception object to obtain further information. If
no suitable exception handler is found, the programme terminates with an error message.

It is possible to create different types of exceptions to reflect the actual cause of the reported error or unusual cir-
cumstance. For an overview of the class hierarchy of built-in exceptions, see Exception hierarchy in the Python
documentation. Each exception type is a Python class that inherits from its parent exception type. For example, a
ZeroDivisionError is also an ArithmeticError, an Exception and also a BaseException by inheritance. This
hierarchy is intentional: most exceptions inherit from Exception, and it is strongly recommended that all user-defined
exceptions also subclass Exception, and not BaseException:

class EmptyFileError(Exception):
pass

This defines your own exception type, which inherits from the Exception base type.

filenames = ["myFile1.py", "nonExistent.py", "emptyFile.py", "myFile2.py"]

A list of different file types is defined.

Finally, exceptions or errors are caught and handled using the compound statement try-except-else-finally. Any
exception that is not caught will cause the programme to terminate.

9.4. Exceptions 51

https://docs.python.org/3/library/exceptions.html#exception-hierarchy

Python basics, Release 24.1.0

7 try:
8 f = open(file, "r")
9 line = f.readline()

10 if line == "":
11 f.close()
12 raise EmptyFileError(f"{file} is empty")
13 except IOError as error:
14 print(f"Cannot open file {file}: {error.strerror}")
15 except EmptyFileError as error:
16 print(error)
17 else:
18 print(f"{file}: {f.readline()}")
19 finally:
20 print("File", file, "processed")

Line 7
If an IOError or EmptyFileError occurs during the execution of the instructions in the try block, the corre-
sponding except block is executed.

Line 9
An IOError could be triggered here.

Line 12
Here you trigger the EmptyFileError.

Line 17
The else clause is optional; it is executed if no exception occurs in the try block.

Note: In this example, continue statements could have been used in the except blocks instead.

Line 19
The finally clause is optional; it is executed at the end of the block, regardless of whether an exception was
thrown or not.

9.5 Context management with with

A more rational way to encapsulate the try-except-finally pattern is to use the keyword with and a context
manager. Python defines context managers for things like file access and custom context managers. One advantage of
context managers is that they can define default clean-up actions that are always executed, whether an exception occurs
or not.

The following listing shows opening and reading a file using with and a context manager.

1 filename = "myFile1.py"
2 with open(filename, "r") as f:
3 for line in f:
4 print(f)

A context manager is set up here that encloses the open function and the block that follows it. The predefined clean-up
action of the context manager closes the file even if an exception occurs. As long as the expression in the first line is
executed without throwing an exception, the file is always closed. This code is equivalent to this code:

52 Chapter 9. Control flows

Python basics, Release 24.1.0

1 filename = "myfile1.py"
2 try:
3 f = open(filename, "r")
4 for line in f:
5 print(f)
6 except Exception as e:
7 raise e
8 finally:
9 f.close()

9.5. Context management with with 53

Python basics, Release 24.1.0

54 Chapter 9. Control flows

CHAPTER

TEN

FUNCTIONS

10.1 Basic function definitions

The basic syntax for a Python function definition is

def function_name(param1, param2, ...):
body

As with control streams, Python uses indentation to separate the function from the function definition. The following
simple example inserts the code into a function so that you can call it to get the factorial of a number:

1 >>> def fact(n):
2 ... """Return the factorial of the given number."""
3 ... f = 1
4 ... while n > 0:
5 ... f = f * n
6 ... n = n - 1
7 ... return f

Line 2
This is an optional documentation string, or docstring. You can get its value by calling fact.__doc__. The
purpose of docstrings is to describe the behaviour of a function and the parameters it takes, while comments are
to document internal information about how the code works. Docstrings are Strings that immediately follow the
first line of a function definition and are usually enclosed in triple quotes to allow for multi-line descriptions. For
multi-line documentation strings, it is common to give a summary of the function on the first line, follow this
summary with an empty line and end with the rest of the information.

See also:
• sphinx.ext.napoleon

Line 7
The value is returned after the function is called. You can also write functions that have no return statement and
return None, and when return arg is executed, the value arg is returned.

Although all Python functions return values, it is up to you how the return value of a function is used:

1 >>> fact(3)
2 6
3 >>> x = fact(3)
4 >>> x
5 6

55

https://en.wikipedia.org/wiki/Factorial

Python basics, Release 24.1.0

Line 1
The return value is not linked to a variable.

Line 2
The value of the fact function is only output in the interpreter.

Line 3
The return value is linked to the variable x.

10.2 Parameters

Python offers flexible mechanisms for passing arguments to functions:

1 >>> x, y = 2, 3
2 >>> def func1(u, v, w):
3 ... value = u + 2*v + w**2
4 ... if value > 0:
5 ... return u + 2*v + w**2
6 ... else:
7 ... return 0
8 ...
9 >>> func1(x, y, 2)

10 12
11 >>> func1(x, w=y, v=2)
12 15
13 >>> def func2(u, v=1, w=1):
14 ... return u + 4 * v + w ** 2
15 ...
16 >>> func2(5, w=6)
17 45
18 >>> def func3(u, v=1, w=1, *tup):
19 ... print((u, v, w) + tup)
20 ...
21 >>> func3(7)
22 (7, 1, 1)
23 >>> func3(1,2,3,4,5)
24 (1, 2, 3, 4, 5)
25 >>> def func4(u, v=1, w=1, **kwargs):
26 ... print(u, v, w, kwargs)
27 ...
28 >>> func4(1, 2, s=4, t=5, w=3)
29 1 2 3 {'s': 4, 't': 5}

Line 2
Functions are defined with the def statement.

Line 5
The return statement is used by a function to return a value. This value can be of any type. If no return
statement is found, the value None is returned by Python.

Line 11
Function arguments can be entered either by position or by name (keyword). z and y are specified by name in
our example.

56 Chapter 10. Functions

Python basics, Release 24.1.0

Line 13
Function parameters can be defined with default values that will be used if a function call omits them.

Line 18
A special parameter can be defined that combines all additional positional arguments in a function call into one
tuple.

Zeile 25
Similarly, a special parameter can be defined that summarises all additional keyword arguments in a function call
in a dictionary.

10.2.1 Parameters

Options for function parameters

Most functions need parameters. Python offers three options for defining function parameters.

Positional parameters

The simplest way to pass parameters to a function in Python is to pass them at the position. On the first line of the
function, you specify the variable name for each parameter; when the function is called, the parameters used in the
calling code are assigned to the function’s parameter variables based on their order. The following function calculates
x as a power of y:

>>> def power(x, y):
... p = 1
... while y > 0:
... p = p * x
... y = y - 1
... return p
...
>>> power(2, 5)
32

This method requires that the number of parameters used by the calling code exactly matches the number of parameters
in the function definition; otherwise, a type error exception is thrown:

>>> power(2)
Traceback (most recent call last):
File "<stdin>", line 1, in <module>

TypeError: power() missing 1 required positional argument: 'y'

Function parameters can have default values, which you can declare by assigning a default value in the first line of the
function definition, like this:

def function_name(param1, param2=Standardwert2, param3=Standardwert3, ...)

Any number of parameters can be given default values, but parameters with default values must be defined as the last
in the parameter list.

The following function also calculates x as a power of y. However, if y is not specified in a function call, the default
value 5 is used:

10.2. Parameters 57

Python basics, Release 24.1.0

>>> def power(x, y=5):
... p = 1
... while y > 0:
... p = p * x
... y = y - 1
... return p

You can see the effect of the standard argument in the following example:

>>> power(3, 6)
729
>>> power(3)
243

Parameter names

You can also pass arguments to a function by using the name of the corresponding function parameter rather than its
position. Similar to the previous example, you can enter the following:

>>> power(y=6, x=2)
64

Since the arguments for the power are named x and y in the last call, their order is irrelevant; the arguments are linked
to the parameters of the same name in the definition of the power, and you get back 2^6. This type of argument passing
is called keyword passing. Keyword passing can be very useful in combination with the default arguments of Python
functions when you define functions with a large number of possible arguments, most of which have common default
values.

Variable number of arguments

Python functions can also be defined to handle a variable number of arguments. This is possible in two ways. One
method collects an unknown number of arguments in a list. The other method can collect an arbitrary number of
arguments passed with a keyword that has no correspondingly named parameter in the function parameter list in a dict.

For an indeterminate number of positional arguments, prefixing the function’s final parameter name with a * causes
all excess non-keyword arguments in a function call, that is, the positional arguments that are not assigned to any other
parameter, to be collected and assigned as a tuple to the specified parameter. This is, for example, a simple way to
implement a function that finds the mean in a list of numbers:

>>> def mean(*numbers):
... if len(numbers) == 0:
... return None
... else:
... m = sum(numbers) / len(numbers)
... return m

Now you can test the behaviour of the function, for example with:

>>> mean(3, 5, 2, 4, 6)
4.0

58 Chapter 10. Functions

Python basics, Release 24.1.0

Any number of keyword arguments can also be processed if the last parameter in the parameter list is prefixed with **.
Then all arguments passed with a keyword are collected in a dict. The key for each entry in the dict is the keyword
(parameter name) for the argument. The value of this entry is the argument itself. An argument passed by keyword is
superfluous in this context if the keyword with which it was passed does not match one of the parameter names in the
function definition, for example:

>>> def server(ip, port, **other):
... print("ip: {0}, port: {1}, keys in 'other': {2}".format(ip,
... port, list(other.keys())))
... total = 0
... for k in other.keys():
... total = total + other[k]
... print("The sum of the other values is {0}".format(total))

Trying out this function shows that it can add the arguments passed under the keywords foo, bar and baz, even though
foo, bar and baz are not parameter names in the function definition:

>>> server("127.0.0.1", port = "8080", foo = 3, bar = 5, baz = 2)
ip: 127.0.0.1, port: 8080, keys in 'other': ['foo', 'bar', 'baz']
The sum of the other values is 10

Mixing argument passing techniques

It is possible to use all the argument passing techniques of Python functions at the same time, although this can be
confusing if you don’t do it carefully. Positional arguments should come first, then named arguments, followed by
indefinite positional arguments with a simple *, and finally indefinite keyword arguments with **.

Mutable objects as arguments

Arguments are passed by object reference. The parameter becomes a new reference to the object. With immutable
objects such as Tuples, Strings and Numbers, what is done with a parameter has no effect outside the function. However,
if you pass a mutable object, such as a Lists, a Dictionaries or a class instance, any change to the object changes what
the argument refers to outside the function. Reassigning the parameter has no effect on the argument.

>>> def my_func(n, l):
... l.append(1)
... n = n + 1
...
>>> x = 5
>>> y = [2, 4, 6]
>>> my_func(x, y)
>>> x, y
(5, [2, 4, 6, 1])

The variable x is not changed because it is unchangeable. Instead, the function parameter n is set so that it refers to the
new value 6. However, there is a change in y because the list it refers to has been changed.

10.2. Parameters 59

Python basics, Release 24.1.0

10.2.2 Variables

Local, non-local and global variables

Here you return to the definition of fact from the beginning of this Functions chapter:

>>> def fact(n):
... """Return the factorial of the given number."""
... f = 1
... while n > 0:
... f = f * n
... n = n - 1
... return f

Both the variables f and n are local to a particular call to the function fact; changes made to them during the execution
of the function have no effect on variables outside the function. All variables in the parameter list of a function and all
variables created within a function by an assignment, such as f = 1, are local to the function.

You can explicitly make a variable a global variable by declaring it with the global statement before it is used. Global
variables can be accessed and changed by the function. They exist outside the function and can also be accessed and
changed by other functions that declare them as global, or by code that is not inside a function. Here is an example that
illustrates the difference between local and global variables:

>>> def my_func():
... global x
... x = 1
... y = 2

>>> x = 3
>>> y = 4
>>> my_func()
>>> x
1
>>> y
4

In this example, a function is defined that treats x as a global variable and y as a local variable, and attempts to change
both x and y. The assignment to x within my_func is an assignment to the global variable x, which also exists outside
my_func. Since x is designated as global in my_func, the assignment changes this global variable so that it retains the
value 1 instead of the value 3. However, the same is not true for y; the local variable y inside my_func initially refers
to the same value as the variable y outside my_func, but the assignment causes y to refer to a new value that is local
to the my_func function.

See also:
• The global statement

While global is used for a top-level variable, nonlocal refers to any variable in an enclosing area.

See also:
• The nonlocal statement

• PEP 3104

60 Chapter 10. Functions

https://docs.python.org/3/reference/simple_stmts.html#global
https://docs.python.org/3/reference/simple_stmts.html#nonlocal
https://peps.python.org/pep-3104/

Python basics, Release 24.1.0

10.2.3 Decorators

Functions can also be passed as arguments to other functions and return the results of other functions. For example, it
is possible to write a Python function that takes another function as a parameter, embeds it in another function that does
something similar, and then returns the new function. This new combination can then be used instead of the original
function:

1 >>> def inf(func):
2 ... print("Information about", func.__name__)
3 ... def details(*args):
4 ... print("Execute function", func.__name__, "with the argument(s)")
5 ... return func(*args)
6 ... return details
7 ...
8 >>> def my_func(*params):
9 ... print(params)

10 ...
11 >>> my_func = inf(my_func)
12 Information about my_func
13 >>> my_func("Hello", "Pythonistas!")
14 Execute function my_func with the argument(s)
15 ('Hello', 'Pythonistas!')

Line 2
The inf function outputs the name of the function it wraps.

Line 6
When finished, the inf function returns the wrapped function.

A decorator is syntactic sugar for this process and allows you to wrap one function inside another with a one-line
addition. You still get exactly the same effect as with the previous code, but the resulting code is much cleaner and
easier to read. Using a decorator simply consists of two parts:

1. the definition of the function to wrap or decorate other functions, and

2. the use of an @ followed by the decorator just before the wrapped function is defined.

The decorator function should take a function as a parameter and return a function, as follows:

1 >>> @inf
2 ... def my_func(*params):
3 ... print(params)
4 ...
5 Information about my_func
6 >>> my_func("Hello", "Pythonistas!")
7 Execute function my_func with the argument(s)
8 ('Hello', 'Pythonistas!')

Line 1
The function my_func is decorated with @inf.

Line 7
The wrapped function is called after the decorator function is finished.

10.2. Parameters 61

https://en.wikipedia.org/wiki/Syntactic_sugar

Python basics, Release 24.1.0

functools

The Python functools module is intended for higher-order functions, for example functions that act on or return other
functions. Mostly you can use them as decorators, such as:

functools.cache()
Simple, lightweight, function cache as of Python 3.9, sometimes called memoize. It returns the same as
functools.lru_cache() with the parameter maxsize=None, additionally creating a Dictionaries with the
function arguments. Since old values never need to be deleted, this function is then also smaller and faster.
Example:

1 >>> from functools import cache
2 >>> @cache
3 ... def factorial(n):
4 ... return n * factorial(n-1) if n else 1
5 ...
6 >>> factorial(8)
7 40320
8 >>> factorial(10)
9 3628800

Line 6
Since there is no previously stored result, nine recursive calls are made.

Line 8
makes only two new calls, as the other results come from the cache.

functools.wraps()
This decorator makes the wrapper function look like the original function with its name and properties.

>>> from functools import wraps
>>> def my_decorator(f):
... @wraps(f)
... def wrapper(*args, **kwargs):
... """Wrapper docstring"""
... print('Call decorated function')
... return f(*args, **kwargs)
... return wrapper
...
>>> @my_decorator
... def example():
... """Example docstring"""
... print('Call example function')
...
>>> example.__name__
'example'
>>> example.__doc__
'Example docstring'

Without @wraps decorator, the name and docstring of the wrapper method would have been returned instead:

>>> example.__name__
'wrapper'
>>> example.__doc__
'Wrapper docstring'

62 Chapter 10. Functions

https://docs.python.org/3/library/functools.html#module-functools
https://docs.python.org/3/library/functools.html#functools.cache
https://docs.python.org/3/library/functools.html#functools.lru_cache
https://docs.python.org/3/library/functools.html#functools.wraps

Python basics, Release 24.1.0

10.2.4 Lambda functions

In Python, a lambda function is an anonymous function, that is, a function that is declared without a name. It is a small
and restricted function that is no longer than one line. Like a normal function, a lambda function can have several
arguments, but only one expression that is evaluated and returned.

The syntax of a lambda function is

lambda ARGUMENTS: EXPRESSION

>>> add = lambda x, y: x + y
>>> add(2, 3)
5

Note: There is no return statement in the lambda function. The single expression after the colon is the return value.

In the next example, a lambda function is created within a function call. However, there is no global variable to store
the values of the lambda function:

1 >>> count = ['1', '123', '1000']
2 >>> max(count)
3 '123'
4 >>> max(count, key=lambda val: int(val))
5 '1000'

In this case, the max() function accepts the key argument, which defines how the size of each entry is to be determined.
Using a lambda function that converts each string into an integer, max can compare the numerical values to determine
the expected result.

10.2. Parameters 63

https://docs.python.org/3/library/functions.html#max

Python basics, Release 24.1.0

64 Chapter 10. Functions

CHAPTER

ELEVEN

MODULES

Modules are used in Python to organise larger projects. The Python standard library is divided into modules to make
it more manageable. You don’t have to organise your own code into modules, but if you write larger programs or code
that you want to reuse, you should do so.

11.1 What is a module?

A module is a file that contains code. It defines a group of Python functions or other objects, and the name of the
module is derived from the name of the file. Modules usually contain Python source code, but can also be compiled C
or C++ object files. Compiled modules and Python source modules are used in the same way.

Modules not only group related Python objects together, but also help to avoid naming conflicts. You can write a module
called mymodule for your programme that defines a function called my_func. In the same programme, you may also
want to use another module called othermodule, which also defines a function called my_func, but does something
different from your my_func function. Without modules, it would be impossible to use two different functions with
the same name. With modules, you can refer to the functions mymodule.my_func and othermodule.my_func in
your main programme. Using the module names ensures that the two my_func functions are not confused, as Python
uses so-called namespaces. A namespace is essentially a dictionary of names for the functions, classes, modules, etc.
available there.

Modules are also used to make Python itself more manageable. Most of Python’s standard functions are not integrated
into the core of the language, but are provided via special modules that you can load as needed.

See also:
• Python Module Index

11.2 Creating modules

Probably the best way to learn about modules is to create your own module. To do this, we create a text file called
wc.py, and enter the Python code below into this text file. If you use IDLE, select File → New Window and start
typing.

It is easy to create your own modules that can be imported and used in the same way as Python’s built-in library modules.
The following example is a simple module with a function that prompts for a file name and determines the number of
words in this file.

1 """wc module. Contains function: words_occur()"""
2

3

4 def words_occur():
(continues on next page)

65

https://docs.python.org/3/py-modindex.html

Python basics, Release 24.1.0

(continued from previous page)

5 """words_occur() - count the occurrences of words in a file."""
6 # Prompt user for the name of the file to use.
7 file_name = input("Enter the name of the file: ")
8 # Open the file, read it and store its words in a list.
9 f = open(file_name, "r")

10 word_list = f.read().split()
11 f.close()
12 # Count the number of occurrences of each word in the file.
13 occurs_dict = {}
14 for word in word_list:
15 # increment the occurrences count for this word
16 occurs_dict[word] = occurs_dict.get(word, 0) + 1
17 # Print out the results.
18 print(
19 f"File {file_name} has {len(word_list)} words, "
20 f"{len(occurs_dict)} are unique:"
21)
22 print(occurs_dict)
23

24

25 if __name__ == "__main__":
26 words_occur()

Lines 1 and 5
Docstrings are standard methods for documenting modules, functions, methods and classes.

Line 10
read returns a string containing all the characters in a file, and split returns a list of the words in a string using
spaces.

Lines 25 to 26
With this if-statement you can use the programme in two ways:

• for importing in the Python shell or another Python script __name__ is the filename:

>>> import wc
>>> wc.words_occur()
Enter the name of the file: README.rst
File README.rst has 350 words (187 are unique)
{'Quick': 1, ...}

Alternatively, you can also import words_occur directly:

>>> from wc import words_occur
>>> words_occur()
Enter the name of the file: README.rst
File README.rst has 350 words (187 are unique)
{'Quick': 1, ...}

You can use the interactive mode of the Python shell or IDLE to incrementally test a module as you create
it. However, if you change your module on disk, entering the import command again will not reload it. For
this purpose, you must use the reload function from the importlib module:

66 Chapter 11. Modules

https://docs.python.org/3/library/importlib.html

Python basics, Release 24.1.0

>>> import wc, importlib
>>> importlib.reload(wc)
<module 'wc' from '/home/veit/.local/lib/python3.8/site-packages/wc.py'>

• as a script it is executed with the name __main__ and the function words_occur()`` is called:

$ python3 wc.py
Enter the name of the file: README.rst
File README.rst has 350 words (187 are unique)
{'Quick': 1, ...}

First save this code in one of the directories of the module search path, which can be found in the list of sys.path.
We recommend .py as the file name extension, as this identifies the file as Python source code.

Note: The list of directories displayed with sys.path depends on your system configuration. This list of directories is
searched by Python in the order when an import statement is executed. The first module found that matches the import
request is used. If there is no matching module in this search path, an ImportError is raised.

If you are using IDLE, you can view the search path and the modules it contains graphically by using the File → Path
Browser window.

The variable sys.path is initialised with the value of the environment variable PYTHONPATH, if it exists. When you
run a Python script, the sys.path variable for that script will have the directory where the script is located as the first
element, so you can conveniently find out where the executing Python programme is located.

11.3 Command line arguments

In our example, if you want to pass the file name as a command line argument, for example

$ python3 wc.py README.rst

you can easily do this with the following modification of our script:

--- /home/docs/checkouts/readthedocs.org/user_builds/python-basics-tutorial/checkouts/24.
→˓1.0/docs/modules/wc.py
+++ /home/docs/checkouts/readthedocs.org/user_builds/python-basics-tutorial/checkouts/24.
→˓1.0/docs/modules/wcargv.py
@@ -1,10 +1,12 @@
"""wc module. Contains function: words_occur()"""
+
+import sys

def words_occur():
"""words_occur() - count the occurrences of words in a file."""
Prompt user for the name of the file to use.

- file_name = input("Enter the name of the file: ")
+ file_name = sys.argv.pop()

Open the file, read it and store its words in a list.
f = open(file_name, "r")
word_list = f.read().split()

(continues on next page)

11.3. Command line arguments 67

Python basics, Release 24.1.0

(continued from previous page)

@@ -16,8 +18,8 @@
occurs_dict[word] = occurs_dict.get(word, 0) + 1

Print out the results.
print(

- f"File {file_name} has {len(word_list)} words, "
- f"{len(occurs_dict)} are unique:"
+ "File %s has %d words (%d are unique)"
+ % (file_name, len(word_list), len(occurs_dict))

)
print(occurs_dict)

sys.argv
returns a list of command line arguments passed to a Python script. argv[0] is the script name.

.pop
removes the element at the given position in the list and returns it. If no index is specified, .pop() removes the
last element in the list and returns it.

11.4 The argparse module

You can configure a script to accept command line options as well as arguments. The argparse module supports
parsing of different argument types and can even generate messages. To use the argparse module, create an instance
of ArgumentParser, fill it with arguments, and then read both the optional and positional arguments. The following
example illustrates the use of the module:

--- /home/docs/checkouts/readthedocs.org/user_builds/python-basics-tutorial/checkouts/24.
→˓1.0/docs/modules/wc.py
+++ /home/docs/checkouts/readthedocs.org/user_builds/python-basics-tutorial/checkouts/24.
→˓1.0/docs/modules/wcargparse.py
@@ -1,10 +1,15 @@
"""wc module. Contains function: words_occur()"""
+
+from argparse import ArgumentParser

def words_occur():
"""words_occur() - count the occurrences of words in a file."""

+ parser = ArgumentParser()
Prompt user for the name of the file to use.

- file_name = input("Enter the name of the file: ")
+ parser.add_argument("-f", "--file", dest="filename", help="read data from the file")
+ args = parser.parse_args()
+ file_name = args.filename

Open the file, read it and store its words in a list.
f = open(file_name, "r")
word_list = f.read().split()

@@ -16,8 +21,8 @@
occurs_dict[word] = occurs_dict.get(word, 0) + 1

Print out the results.
print(

(continues on next page)

68 Chapter 11. Modules

https://docs.python.org/3/library/sys.html#sys.argv
https://docs.python.org/3/tutorial/datastructures.html#tut-morelists
https://docs.python.org/3/library/argparse.html
https://docs.python.org/3/library/argparse.html#argparse.ArgumentParser

Python basics, Release 24.1.0

(continued from previous page)

- f"File {file_name} has {len(word_list)} words, "
- f"{len(occurs_dict)} are unique:"
+ "File %s has %d words (%d are unique)"
+ % (file_name, len(word_list), len(occurs_dict))

)
print(occurs_dict)

This code creates an instance of ArgumentParser and then adds the filename argument. The argparse module
returns a namespace object that contains the arguments as attributes. You can retrieve the values of the arguments with
dot notation, in our case with args.filename.

You can now call the script with:

$ python3 wcargparse.py -f index.rst

In addition, a help option -h or --help is automatically generated:

$ python3 wcargparse.py -h
usage: wcargparse.py [-h] [-f FILENAME]

optional arguments:
-h, --help show this help message and exit
-f FILENAME, --file FILENAME

read data from the file

11.4. The argparse module 69

Python basics, Release 24.1.0

70 Chapter 11. Modules

CHAPTER

TWELVE

PROGRAMME LIBRARIES

Several Modules can be grouped together in a programme library. Such libraries allow you to group modules into direc-
tories and subdirectories and then import and hierarchically reference them using a package.subpackage.module
syntax. This does not require much more than the creation of a possibly empty initialisation file for each package or
subpackage.

12.1 „Batteries included“

In Python, a library can consist of several components, including built-in data types and constants that can be used
without an import statement, such as Numbers and Lists, as well as some built-in Functions and Exceptions. The
largest part of the library is an extensive collection of Modules. If you have Python installed, there are also several
libraries available for you to use.

• Managing data types

• Changing files

• Interacting with the operating system

• Use of Internet protocols

• Developing and debugging

12.1.1 Managing data types

The standard library naturally contains support for the types built into Python. In addition, there are three categories
in the standard library that deal with different data types: Modules for strings, datatypes and numbers.

String modules

:

Module Description
string compares with constants such as string.digits or string.whitespace
re searches and replaces text with regular expressions
struct interprets bytes as packed binary data
difflib helps to calculate deltas, find differences between strings or sequences and create patches and diff files
textwrap wraps and fills text, formats text with line breaks or spaces

See also:

71

https://docs.python.org/3/library/string.html#module-string
https://docs.python.org/3/library/string.html#string.digits
https://docs.python.org/3/library/string.html#string.whitespace
https://docs.python.org/3/library/re.html#module-re
https://docs.python.org/3/library/struct.html#module-struct
https://docs.python.org/3/library/difflib.html#module-difflib
https://docs.python.org/3/library/textwrap.html#module-textwrap

Python basics, Release 24.1.0

• Manipulation of strings with pandas

Modules for data types

Module Description
datetime,
calendar

Time and calendar operations

collections Container data types
enum allows the creation of enumeration classes that bind symbolic names to constant values
array Efficient arrays of numeric values
sched Event scheduler
queue Synchronised queue class
copy Shallow and deep copy operations
pprint prints Python data structures „pretty“.
typing supports commenting code with hints about the types of objects, especially function parameters

and return values

Modules for numbers

:

Module Description
numbers for numeric abstract base classes
math, cmath for mathematical functions for real and complex numbers
decimal for decimal fixed-point and floating-point arithmetic
statistics for functions for calculating mathematical statistics
fractions for rational numbers
random for generating pseudo-random numbers and selections and for shuffling sequences
itertools for functions that create iterators for efficient loops
functools for higher-order functions and operations on callable objects
operator for standard operators as functions

72 Chapter 12. Programme libraries

https://www.python4data.science/en/latest/workspace/pandas/string-manipulation.html
https://docs.python.org/3/library/datetime.html#module-datetime
https://docs.python.org/3/library/calendar.html#module-calendar
https://docs.python.org/3/library/collections.html#module-collections
https://docs.python.org/3/library/enum.html#module-enum
https://docs.python.org/3/library/array.html#module-array
https://docs.python.org/3/library/sched.html#module-sched
https://docs.python.org/3/library/queue.html#module-queue
https://docs.python.org/3/library/copy.html#module-copy
https://docs.python.org/3/library/pprint.html#module-pprint
https://docs.python.org/3/library/typing.html#module-typing
https://docs.python.org/3/library/numbers.html#module-numbers
https://docs.python.org/3/library/math.html#module-math
https://docs.python.org/3/library/cmath.html#module-cmath
https://docs.python.org/3/library/decimal.html#module-decimal
https://docs.python.org/3/library/statistics.html#module-statistics
https://docs.python.org/3/library/fractions.html#module-fractions
https://docs.python.org/3/library/random.html#module-random
https://docs.python.org/3/library/itertools.html#module-itertools
https://docs.python.org/3/library/functools.html#module-functools
https://docs.python.org/3/library/operator.html#module-operator

Python basics, Release 24.1.0

12.1.2 Changing files

:

Module Description
os.path performs common pathname manipulations
pathlib manipulates pathnames
fileinput iterates over multiple input files
filecmp compares files and directories
tempfile creates temporary files and directories
glob, fnmatch use UNIX-like path and file name patterns
linecache randomly accesses lines of text
shutil performs higher level file operations
mimetypes Assignment of file names to MIME types
pickle, shelve enable Python object serialisation and persistence, see

also The pickle module
csv reads and writes CSV files
json JSON encoder and decoder
sqlite3 provides a DB-API 2.0 interface for SQLite databases, see

also The sqlite module
xml, xml.parsers.expat, xml.dom, xml.sax, xml.
etree.ElementTree

reads and writes XML files, see also R:doc:../save-
data/xml

html.parser, html.entities Parsing HTML and XHTML
configparser reads and writes Windows-like configuration files (.ini)
base64, binhex, binascii, quopri, uu encodes/decodes files or streams
struct reads and writes structured data to and from files
zlib, gzip, bz2, zipfile, tarfile for working with archive files and compressions

See also:
• pandas IO tools

• Examples of serialisation formats CSV, JSON, Excel, XML/HTML, YAML, TOML und Pickle.

12.1.3 Interacting with the operating system

Module Description
os Various operating system interfaces
platform Access to the identification data of the underlying platform
time Time access and conversions
io Tools for working with data streams
select Waiting for I/O completion
optparse Parser for command line options
curses Terminal handling for character cell displays
getpass Portable password entry
ctypes provides C-compatible data types
threading high-level threading interface
multiprocessing Process-based threading interface
subprocess Management of subprocesses

12.1. „Batteries included“ 73

https://docs.python.org/3/library/os.path.html#module-os.path
https://docs.python.org/3/library/pathlib.html#module-pathlib
https://docs.python.org/3/library/fileinput.html#module-fileinput
https://docs.python.org/3/library/filecmp.html#module-filecmp
https://docs.python.org/3/library/tempfile.html#module-tempfile
https://docs.python.org/3/library/glob.html#module-glob
https://docs.python.org/3/library/fnmatch.html#module-fnmatch
https://docs.python.org/3/library/linecache.html#module-linecache
https://docs.python.org/3/library/shutil.html#module-shutil
https://docs.python.org/3/library/mimetypes.html#module-mimetypes
https://docs.python.org/3/library/pickle.html#module-pickle
https://docs.python.org/3/library/shelve.html#module-shelve
https://docs.python.org/3/library/csv.html#module-csv
https://docs.python.org/3/library/json.html#module-json
https://docs.python.org/3/library/sqlite3.html#module-sqlite3
https://docs.python.org/3/library/xml.html#module-xml
https://docs.python.org/3/library/pyexpat.html#module-xml.parsers.expat
https://docs.python.org/3/library/xml.dom.html#module-xml.dom
https://docs.python.org/3/library/xml.sax.html#module-xml.sax
https://docs.python.org/3/library/xml.etree.elementtree.html#module-xml.etree.ElementTree
https://docs.python.org/3/library/xml.etree.elementtree.html#module-xml.etree.ElementTree
https://docs.python.org/3/library/html.parser.html#module-html.parser
https://docs.python.org/3/library/html.entities.html#module-html.entities
https://docs.python.org/3/library/configparser.html#module-configparser
https://docs.python.org/3/library/base64.html#module-base64
https://docs.python.org/3/library/binascii.html#module-binascii
https://docs.python.org/3/library/quopri.html#module-quopri
https://docs.python.org/3/library/uu.html#module-uu
https://docs.python.org/3/library/struct.html#module-struct
https://docs.python.org/3/library/zlib.html#module-zlib
https://docs.python.org/3/library/gzip.html#module-gzip
https://docs.python.org/3/library/bz2.html#module-bz2
https://docs.python.org/3/library/zipfile.html#module-zipfile
https://docs.python.org/3/library/tarfile.html#module-tarfile
https://www.python4data.science/en/latest/data-processing/pandas-io.html
https://www.python4data.science/en/latest/data-processing/serialisation-formats/csv/example.html
https://www.python4data.science/en/latest/data-processing/serialisation-formats/json/example.html
https://www.python4data.science/en/latest/data-processing/serialisation-formats/excel.html
https://www.python4data.science/en/latest/data-processing/serialisation-formats/xml-html/index.html
https://www.python4data.science/en/latest/data-processing/serialisation-formats/yaml/example.html
https://www.python4data.science/en/latest/data-processing/serialisation-formats/toml/example.html
https://www.python4data.science/en/latest/data-processing/serialisation-formats/pickle/pickle-examples.html
https://docs.python.org/3/library/os.html#module-os
https://docs.python.org/3/library/platform.html#module-platform
https://docs.python.org/3/library/time.html#module-time
https://docs.python.org/3/library/io.html#module-io
https://docs.python.org/3/library/select.html#module-select
https://docs.python.org/3/library/optparse.html#module-optparse
https://docs.python.org/3/library/curses.html#module-curses
https://docs.python.org/3/library/getpass.html#module-getpass
https://docs.python.org/3/library/ctypes.html#module-ctypes
https://docs.python.org/3/library/threading.html#module-threading
https://docs.python.org/3/library/multiprocessing.html#module-multiprocessing
https://docs.python.org/3/library/subprocess.html

Python basics, Release 24.1.0

12.1.4 Use of Internet protocols

Module descriptiong
socket, ssl Low-level network interface and SSL wrapper for socket

objects
email Email and MIME processing package
mailbox Manipulation of mailboxes in various formats
cgi, cgitb Common Gateway Interface support
wsgiref WSGI utilities and reference implementation
urllib.request, urllib.parse Open and parse URLs
ftplib, poplib, imaplib, nntplib, smtplib,
telnetlib

Clients for various Internet protocols

socketserver Framework for network servers
http.server HTTP server
xmlrpc.client, xmlrpc.server XML-RPC client and server

12.1.5 Developing and debugging

Module Description
pydoc Documentation generator and online help system
doctest Test examples from Python docstrings
unittest Framework for unittests, see also Unittest
test.support Utility functions for tests
trace traces the execution of Python statements
pdb Python debugger
logging logging function for Python
timeit measures the execution time of small code snippets
profile, cProfile Python profiler
sys System-specific parameters and functions
gc Functions of the Python garbage collector
inspect inspects objects live
atexit exit handler
__future__ Future statement definitions
imp allows access to the import internals
zipimport imports modules from zip archives
modulefinder finds modules used by a script

12.2 Adding more Python libraries

Although Python’ „Batteries included“ philosophy means that you can already do a lot with the default installation of
Python, there will inevitably come a situation where you need functionality that is not included in Python. This section
gives an overview of the options available to you.

If you are lucky, you will find the extra functionality you need in a package for your operating system – with a Windows
or macOS executable installer, or a package for your Linux distribution.

This is one of the easiest ways to add a library to your Python installation, as the installer or your package manager will
take care of all the details to correctly add the module to your system. In general, however, such pre-built packages are
not the norm for Python software.

74 Chapter 12. Programme libraries

https://docs.python.org/3/library/socket.html#module-socket
https://docs.python.org/3/library/ssl.html#module-ssl
https://docs.python.org/3/library/email.html#module-email
https://docs.python.org/3/library/mailbox.html#module-mailbox
https://docs.python.org/3/library/cgi.html#module-cgi
https://docs.python.org/3/library/cgitb.html#module-cgitb
https://docs.python.org/3/library/wsgiref.html#module-wsgiref
https://docs.python.org/3/library/urllib.request.html#module-urllib.request
https://docs.python.org/3/library/urllib.parse.html#module-urllib.parse
https://docs.python.org/3/library/ftplib.html#module-ftplib
https://docs.python.org/3/library/poplib.html#module-poplib
https://docs.python.org/3/library/imaplib.html#module-imaplib
https://docs.python.org/3/library/nntplib.html#module-nntplib
https://docs.python.org/3/library/smtplib.html#module-smtplib
https://docs.python.org/3/library/telnetlib.html#module-telnetlib
https://docs.python.org/3/library/socketserver.html#module-socketserver
https://docs.python.org/3/library/http.server.html#module-http.server
https://docs.python.org/3/library/xmlrpc.client.html#module-xmlrpc.client
https://docs.python.org/3/library/xmlrpc.server.html#module-xmlrpc.server
https://docs.python.org/3/library/pydoc.html#module-pydoc
https://docs.python.org/3/library/doctest.html#module-doctest
https://docs.python.org/3/library/unittest.html#module-unittest
https://docs.python.org/3/library/test.html#module-test.support
https://docs.python.org/3/library/trace.html#module-trace
https://docs.python.org/3/library/pdb.html#module-pdb
https://docs.python.org/3/library/logging.html#module-logging
https://docs.python.org/3/library/timeit.html#module-timeit
https://docs.python.org/3/library/profile.html#module-profile
https://docs.python.org/3/library/profile.html#module-cProfile
https://docs.python.org/3/library/sys.html#module-sys
https://docs.python.org/3/library/gc.html#module-gc
https://docs.python.org/3/library/inspect.html#module-inspect
https://docs.python.org/3/library/atexit.html#module-atexit
https://docs.python.org/3/library/__future__.html#module-__future__
https://docs.python.org/3/library/zipimport.html#module-zipimport
https://docs.python.org/3/library/modulefinder.html#module-modulefinder

Python basics, Release 24.1.0

12.2.1 Installing Python libraries with pip and venv

If you need a third-party module that is not pre-built for your platform, you will have to turn to its source distribution.
However, this brings two problems:

1. To install the source distribution, you need to find and download it.

2. Certain Python paths and permissions on your system are expected.

Python offers pip as a current solution to both problems. pip tries to find the module in the Python Package Index
(PyPI), downloads it and all dependencies, and takes care of the installation. The basic syntax of pip is quite simple:
for example, to install the popular requests library from the command line, all you have to do is the following:

$ python3.8 -m pip install requests

If you want to specify a particular version of a package, you can simply append the version numbers:

$ python3.8 -m pip install requests==2.28.1

or

$ python3.8 -m pip install requests>=2.28.0

Installing with the --user option

Often, however, you will not be able or willing to install a Python package in the main Python instance. Maybe you
need a more recent version of a library, but another application still needs an older version. Or maybe you don’t have
sufficient administrator rights to change the system’s default Python. In such cases, one possibility is to install the
library with the --user flag: this installs the library in the home directory, where it can then only be used by you:

$ python3.8 -m pip install --user requests

See also:
• Installing Python Modules

Virtual environments

However, there is an even better option if you want to avoid installing libraries in the Python system. This option is
called a virtual environment virtualenv). It is a self-contained directory structure that contains both an installation of
Python and the additional packages. Because the entire Python environment is contained in the virtual environment, the
libraries and modules installed there cannot collide with those in the main system or in other virtual environments, so
different applications can use different versions of Python and its packages. Creating and using a virtual environment
is a two-step process:

1. First we create the environment:

$ python3 -m venv myenv

> python -m venv myenv

This creates the environment with Python and pip in a directory called myenv.

2. You can then activate this environment so that the next time you call python, it will use the Python from your
new environment:

12.2. Adding more Python libraries 75

https://docs.python.org/3/installing/index.html

Python basics, Release 24.1.0

$ source myenv/bin/activate

> myenv\Scripts\activate.bat

3. You can then install Python packages for this virtual environment only:

(myenv) $ python -m pip install requests

(myenv) > python.exe -m pip install requests

4. If you want to finish your work on this project, you can deactivate the virtual environment again with

(myenv) $ deactivate

(myenv) > deactivate

See also:
• Virtual Environments and Packages

PyPI

The Python Package Index (PyPI) is the standard package index, but by no means the only repository for Python code.
You can access it directly at pypi.org and search for packages or filter the packages by category.

12.3 Packages and programmes

12.3.1 wheels

The current standard format for distributing Python libraries and programs is the use of wheels. wheels are designed to
make the installation of Python code more reliable and to make dependency management easier. However, the details
of creating wheels are beyond the scope of this section, but full details of the requirements and process for creating
wheels can be found in Creating a distribution package.

See also:
• Pradyun Gedam: Thoughts on the Python packaging ecosystem

12.3.2 py2exe and py2app

py2exe creates standalone Windows applications and py2app does the same for macOS. In both cases, these are single
executables that can run on machines that do not have Python installed. In many ways, however, standalone executables
are not ideal, as they tend to be larger and less flexible than native Python applications, but in some situations they can
also be the best or only solution.

76 Chapter 12. Programme libraries

https://docs.python.org/3/tutorial/venv.html
https://pradyunsg.me/blog/2023/01/21/thoughts-on-python-packaging/
https://www.py2exe.org/
https://py2app.readthedocs.io/en/latest/

Python basics, Release 24.1.0

12.3.3 freeze

The freeze tool also creates an executable Python programme that runs on computers that do not have Python installed.
If you want to use the freeze tool, you will probably need to download the Python source code.

Freezing a Python program creates C files that are then compiled and linked with a C compiler that you must have
installed on your system. The application thus frozen will only run on platforms for which the C compiler used provides
its executables.

See also:
• Tools/freeze

12.3.4 PyInstaller and PyOxidizer

PyInstaller and PyOxidizer bundle a Python application and all its dependencies into a single package.

12.3.5 Briefcase

Briefcase is a tool for converting a Python project into a standalone native application for Mac, Windows, Linux,
iPhone/iPad and Android.

12.4 Creating a distribution package

Distribution Packages are archives that can be uploaded to a package index such as pypi.org and installed with pip.

Some of the following commands require a new version of pip, so you should make sure you have the latest version
installed:

$ python3 -m pip install --upgrade pip

> python -m pip install --upgrade pip

12.4.1 Structure

A minimal distribution package can look like this, for example:

dataprep
pyproject.toml
src

dataprep
__init__.py
loaders.py

12.4. Creating a distribution package 77

https://github.com/python/cpython/tree/main/Tools/freeze
https://pyinstaller.org/en/stable/index.html
https://pyoxidizer.readthedocs.io/en/pyoxidizer-0.17/index.html
https://beeware.org/project/projects/tools/briefcase/

Python basics, Release 24.1.0

12.4.2 pyproject.toml

PEP 517 and PEP 518 brought extensible build backends, isolated builds and pyproject.toml in TOML format.

Among other things, pyproject.toml tells pip and build which backend tool to use to build distribution packages for
your project. You can choose from a number of backends, though this tutorial uses hatchling by default.

A minimal yet functional dataprep/pyproject.toml file will then look like this, for example:

1 [build-system]
2 requires = ["hatchling"]
3 build-backend = "hatchling.build"

build-system
defines a section describing the build system

requires
defines a list of dependencies that must be installed for the build system to work, in our case hatchling.

Note: Dependency version numbers should usually be written in the requirements.txt file, not here.

build-backend
identifies the entry point for the build-backend object as a dotted path. The hatchling backend object is available
under hatchling.build.

Note: However, for Python packages that contain binary extensions with Cython, C, C++, Fortran or Rust,
the hatchling backend is not suitable. One of the following backends should be used here:

• setuptools

• scikit-build

• maturin

But thatr’s not all – there are other backends:

• Flit

• whey

• poetry

• pybind11

• meson-python

See also:
• pypackaging-native

Note: With validate-pyproject you can check your pyproject.toml file.

See also:
If you want to look at alternatives to hatchling:

• setuptools

• Flit

78 Chapter 12. Programme libraries

https://peps.python.org/pep-0517/
https://peps.python.org/pep-0518/
https://pip.pypa.io/en/stable/reference/build-system/pyproject-toml/
https://www.python4data.science/en/latest/data-processing/serialisation-formats/toml/index.html
https://pip.pypa.io/en/latest/user_guide/#requirements-files
https://pypackaging-native.github.io
https://validate-pyproject.readthedocs.io/en/latest/

Python basics, Release 24.1.0

• poetry

• pypackaging-native

Metadata

In pyproject.toml you can also specify metadata for your package, such as:

5 [project]
6 name = "dataprep"
7 version = "0.1.0"
8 authors = [
9 { name="Veit Schiele", email="veit@cusy.io" },

10]
11 description = "A small dataprep package"
12 readme = "README.rst"
13 requires-python = ">=3.7"
14 classifiers = [
15 "Programming Language :: Python :: 3",
16 "License :: OSI Approved :: BSD License",
17 "Operating System :: OS Independent",
18]
19 dependencies = [
20 "pandas",
21]
22

23 [project.urls]
24 "Homepage" = "https://github.com/veit/dataprep"
25 "Bug Tracker" = "https://github.com/veit/dataprep/issues"

name
is the distribution name of your package. This can be any name as long as it contains only letters, numbers, ., _
and -. It should also not already be assigned on the Python Package Index (PyPI).

version
is the version of the package.

In our example, the version number has been set statically. However, there is also the possibility to specify the
version dynamically, for example by a file:

[project]
...
dynamic = ["version"]
[tool.hatch.version]
path = "src/dataprep/__about__.py"

The default pattern looks for a variable called __version__ or VERSION, which contains the version, optionally
preceded by the lower case letter v. The default pattern is based on PEP 440.

If this is not the way you want to store versions, you can define a different regular expression with the pattern
option.

See also:
• Calendar Versioning

• ZeroVer

12.4. Creating a distribution package 79

https://github.com/python-poetry/poetry
https://pypackaging-native.github.io
https://peps.python.org/pep-0440/
https://calver.org
https://0ver.org/

Python basics, Release 24.1.0

However, there are other version scheme plug-ins, such as hatch-semver for semantic Versioning.

With the version source plugin hatch-vcs you can also use Git tags:

[build-system]
requires = ["hatchling", "hatch-vcs"]
...
[tool.hatch.version]
source = "vcs"
raw-options = { local_scheme = "no-local-version" }

The setuptools backend also allows dynamic versioning:

[build-system]
requires = ["setuptools>=61.0", "setuptools-scm"]
build-backend = "setuptools.build_meta"
[project]
...
dynamic = ["version"]
[tool.setuptools.dynamic]
version = {attr = "dataprep.VERSION"}

See also:
• Configuring setuptools using pyproject.toml files: Dynamic Metadata

authors
is used to identify the authors of the package by name and email address.

You can also list maintainers in the same format.

description
is a short summary of the package, consisting of one sentence.

readme
is a path to a file containing a detailed description of the package. This is displayed on the package details page
on Python Package Index (PyPI). In this case, the description is loaded from README.rst.

requires-python
specifies the versions of Python that are supported by your project. This will cause installers like pip to search
through older versions of packages until they find one that has a matching Python version.

classifiers
gives the Python Package Index (PyPI) and pip some additional metadata about your package. In this case,
the package is only compatible with Python 3, is under the BSD licence and is OS independent. You should
always at least specify the versions of Python your package runs under, under which licence your package is
available and on which operating systems your package runs. You can find a complete list of classifiers at https:
//pypi.org/classifiers/.

They also have a useful additional feature: to prevent a package from being uploaded to PyPI , use the spe-
cial classifier "Private :: Do Not Upload". PyPI will always reject packages whose classifier starts with
"Private ::".

dependencies
gibt die Abhängigkeiten für euer Paket in einem Array an.

See also:
PEP 631

80 Chapter 12. Programme libraries

https://github.com/Nagidal/hatch-semver
https://semver.org
https://github.com/ofek/hatch-vcs
https://www.python4data.science/en/latest/productive/git/tag.html
https://setuptools.pypa.io/en/latest/userguide/pyproject_config.html#dynamic-metadata
https://pypi.org/classifiers/
https://pypi.org/classifiers/
https://peps.python.org/pep-0631/

Python basics, Release 24.1.0

urls
lets you list any number of additional links that are displayed on the Python Package Index (PyPI). In general,
this could lead to source code, documentation, task managers, etc (et cetera).

See also:
• Declaring project metadata

• PEP 345

Optional dependencies

project.optional-dependencies
allows you to specify optional dependencies for your package. You can also distinguish between different sets:

34 [project.optional-dependencies]
35 tests = [
36 "coverage[toml]",
37 "pytest>=6.0",
38]
39 docs = [
40 "furo",
41 "sphinxext-opengraph",
42 "sphinx-copybutton",
43 "sphinx_inline_tabs"
44]

Recursive optional dependencies are also possible with pip 21.2. For example, for dev you can take over all depen-
dencies from docs and test in addition to pre-commit:

35 dev = [
36 "dataprep[tests, docs]",
37 "pre-commit"
38]

You can install these optional dependencies, for example with:

$ cd /PATH/TO/YOUR/DISTRIBUTION_PACKAGE
$ python3 -m venv .
$. bin/activate
$ python -m pip install --upgrade pip
$ python -m pip install -e '.[dev]'

> cd C:\PATH\TO\YOUR\DISTRIBUTION_PACKAGE
> python3 -m venv .
> Scripts\activate.bat
> python -m pip install --upgrade pip
> python -m pip install -e '.[dev]'

12.4. Creating a distribution package 81

https://packaging.python.org/en/latest/specifications/declaring-project-metadata/#declaring-project-metadata
https://peps.python.org/pep-0345/

Python basics, Release 24.1.0

12.4.3 src package

When you create a new package, you shouldn’t use a flat layout but the src layout, which is also recommended in
Packaging Python Projects of the PyPA. A major advantage of this layout is that tests are run with the installed version
of your package and not with the files in your working directory.

See also:
• Hynek Schlawack: Testing & Packaging

Note: In Python 3.11 PYTHONSAFEPATH can be used to ensure that the installed packages are used first.

dataprep
is the directory that contains the Python files. The name should match the project name to simplify configuration
and be more recognisable to those installing the package.

__init__.py
is required to import the directory as a package. The file should be empty.

loaders.py
is an example of a module within the package that could contain the logic (functions, classes, constants, etc.) of
your package.

12.4.4 Other files

CONTRIBUTORS.rst

See also:
• All contributors

LICENSE

You can find detailed information on this in the Licensing section.

README.rst

This file briefly tells those who are interested in the package how to use it.

See also:
• Make a README

• readme.so

If you write the document in reStructuredText, you can also include the contents as a detailed description in your
package:

setup(
ext_modules=cythonize("src/dataprep/cymean.pyx"),

You can also include them in your Sphinx documentation with .. include:: ../../README.rst.

82 Chapter 12. Programme libraries

https://packaging.python.org/en/latest/tutorials/packaging-projects/
https://www.pyopensci.org/python-package-guide/package-structure-code/python-package-structure.html
https://docs.python.org/3/using/cmdline.html#envvar-PYTHONSAFEPATH
https://allcontributors.org/
https://www.python4data.science/en/latest/productive/licensing.html
https://www.makeareadme.com
https://readme.so

Python basics, Release 24.1.0

CHANGELOG.rst

See also:
• Keep a Changelog

• Scriv

• changelog_manager

• github-activity

• Dinghy

• Python core-workflow blurb

• Release Drafter

• towncrier

12.4.5 Historical files or files needed for binary extensions

Before the pyproject.toml file introduced with PEP 518 became the standard, setuptools required setup.py,
setup.cfg and MANIFEST.in. Today, however, these files are only needed for binary extensions at best.

If you want to replace these files in your packages, you can do so with hatch new --init or ini2toml.

setup.py

A minimal and yet functional dataprep/setup.py can look like this, for example:

1 setup(
2 ext_modules=cythonize("src/dataprep/cymean.pyx"),

package_dir points to the src directory, which can contain one or more packages. You can then use setuptools’s
find_packages() to find all packages in this directory.

Note: find_packages() without src/ directory would package all directories with a __init__.py file, so also
tests/ directories.

setup.cfg

This file is no longer needed, at least not for packaging. wheel nowadays collects all required licence files automatically
and setuptools can build universal wheel packages with the options keyword argument, for example dataprep-0.
1.0-py3-none-any.whl.

12.4. Creating a distribution package 83

https://keepachangelog.com/
https://github.com/nedbat/scriv
https://github.com/masukomi/changelog_manager
https://github.com/executablebooks/github-activity
https://github.com/nedbat/dinghy
https://github.com/python/core-workflow/tree/master/blurb
https://github.com/release-drafter/release-drafter
https://github.com/twisted/towncrier
https://peps.python.org/pep-0518/
https://ini2toml.readthedocs.io/en/latest/setuptools_pep621.html
https://docs.python.org/3/distutils/setupscript.html#listing-whole-packages
https://setuptools.pypa.io/en/latest/userguide/package_discovery.html#finding-simple-packages

Python basics, Release 24.1.0

MANIFEST.in

The file contains all files and directories that are not already covered by packages or py_module. It can look like this:
dataprep/MANIFEST.in:

1 include LICENSE *.rst *.toml *.yml *.yaml *.ini
2 graft src
3 recursive-exclude __pycache__ *.py[cod]

For more instructions in Manifest.in, see MANIFEST.in commands.

Note: People often forget to update the Manifest.in file. To avoid this, you can use check-manifest in a pre-commit
hook.

Note: If you want files and directories from MANIFEST.in to be installed as well, for example if they are runtime-
relevant data, you can specify this with include_package_data=True in your setup() call.

12.4.6 Build

The next step is to create distribution packages for the package. These are archives that can be uploaded to the Python
Package Index (PyPI) and installed by pip.

Make sure you have the latest version of build installed:

Now run the command in the same directory where pyproject.toml is located:

$ python -m pip install build
$ cd /PATH/TO/YOUR/DISTRIBUTION_PACKAGE
$ rm -rf build dist
$ python -m build

> python -m pip install build
> cd C:\PATH\TO\YOUR\DISTRIBUTION_PACKAGE
> rm -rf build dist
> python -m build

The second line ensures that a clean build is created without artefacts from previous builds. The third line should output
a lot of text and create two files in the dist directory when finished:

dist
dataprep-0.1.0-py3-none-any.whl
dataprep-0.1.0.tar.gz

dataprep-0.1.0-py3-none-any.whl
is a binary distribution format with the suffix ..whl, where the filename is composed as follows:

dataprep
is the normalised package name

0.1.0
is the version of the distribution package

84 Chapter 12. Programme libraries

https://packaging.python.org/en/latest/guides/using-manifest-in/
https://pypi.org/project/check-manifest/

Python basics, Release 24.1.0

py3
specifies the Python version and, if applicable, the C-ABI

none
specifies whether the Wheel package is suitable for any OS or only specific ones

any
any is suitable for any processor architecture, x86_64 on the other hand only for chips with the x86 in-
struction set and a 64-bit architecture

dataprep-0.1.0.tar.gz
is a source distribution.

See also:
The reference for the file names can be found in File name convention.

For more information on sdist, see Creating a Source Distribution and PEP 376.

12.4.7 Testing

$ mkdir test_env
$ cd test_env
$ python3 -m venv .
$ source bin/activate
$ python -m pip install dist/dataprep-0.1.0-py3-none-any.whl
Processing ./dist/dataprep-0.1.0-py3-none-any.whl
Collecting pandas
Using cached pandas-1.3.4-cp39-cp39-macosx_10_9_x86_64.whl (11.6 MB)

...
Successfully installed dataprep-0.1.0 numpy-1.21.4 pandas-1.3.4 python-dateutil-2.8.2␣
→˓pytz-2021.3 six-1.16.0

> mkdir test_env
> cd test_env
> python -m venv .
> Scripts\activate.bat
> python -m pip install dist/dataprep-0.1.0-py3-none-any.whl
Processing ./dist/dataprep-0.1.0-py3-none-any.whl
Collecting pandas
Using cached pandas-1.3.4-cp39-cp39-macosx_10_9_x86_64.whl (11.6 MB)

...
Successfully installed dataprep-0.1.0 numpy-1.21.4 pandas-1.3.4 python-dateutil-2.8.2␣
→˓pytz-2021.3 six-1.16.0

Anschließend könnt ihr die Wheel-Datei überprüfen mit:

$ mkdir test_env
$ cd !$
cd test_env
$ python3 -m venv .
$ source bin/activate
$ python -m pip install dist/dataprep-0.1.0-py3-none-any.whl
Processing ./dist/dataprep-0.1.0-py3-none-any.whl
Collecting pandas

(continues on next page)

12.4. Creating a distribution package 85

https://en.wikipedia.org/wiki/Application_binary_interface
https://www.python.org/dev/peps/pep-0427/#file-name-convention
https://docs.python.org/2/distutils/sourcedist.html#creating-a-source-distribution
https://peps.python.org/pep-0376/

Python basics, Release 24.1.0

(continued from previous page)

Using cached pandas-1.3.4-cp39-cp39-macosx_10_9_x86_64.whl (11.6 MB)
...
Successfully installed dataprep-0.1.0 numpy-1.21.4 pandas-1.3.4 python-dateutil-2.8.2␣
→˓pytz-2021.3 six-1.16.0

Then you can check the wheel with:

$ python -m pip install check-wheel-contents
$ check-wheel-contents dist/*.whl
dist/dataprep-0.1.0-py3-none-any.whl: OK

Alternatively, you can also install the package:

$ python -m pip install dist/dataprep-0.1.0-py3-none-any.whl
Processing ./dist/dataprep-0.1-py3-none-any.whl
Collecting pandas
...
Installing collected packages: numpy, pytz, six, python-dateutil, pandas, dataprep
Successfully installed dataprep-0.1 numpy-1.21.4 pandas-1.3.4 python-dateutil-2.8.2 pytz-
→˓2021.3 six-1.16.0

You can then call Python and import your loaders module:

from dataprep import loaders

Note: There are still many instructions that include a step to call setup.py, for example python setup.py sdist.
However, this is now considered anti-pattern by parts of the Python Packaging Authority (PyPA).

12.5 GitLab Package Registry

You can also publish your distribution packages in the package registry of your GitLab project and use them with both
Pip and twine.

See also:
PyPI packages in the Package Registry

12.5.1 Authentication

To authenticate to the GitLab Package Registry, you can use one of the following methods:

• A personal access token with the scope api.

• A deploy token with the scopes read_package_registry, write_package_registry or both.

• A CI job token..

86 Chapter 12. Programme libraries

https://twitter.com/pganssle/status/1152695229105000453
https://github.com/pypa/
https://docs.gitlab.com/ee/user/packages/pypi_repository/#publish-a-pypi-package-by-using-twine

Python basics, Release 24.1.0

. . . with a personal access token

To authenticate yourself with a personal access token, you can add the following to the ~/.pypirc file, for example:

[distutils]
index-servers=

gitlab

[gitlab]
repository = https://ce.cusy.io/api/v4/projects/{PROJECT_ID}/packages/pypi
username = {NAME}
password = {YOUR_PERSONAL_ACCESS_TOKEN}

. . . with a deploy token

[distutils]
index-servers =

gitlab

[gitlab]
repository = https://ce.cusy.io/api/v4/projects/{PROJECT_ID}/packages/pypi
username = {DEPLOY_TOKEN_USERNAME}
password = {DEPLOY_TOKEN}

. . . with a job token

image: python:latest

run:
script:
- pip install build twine
- python -m build
- TWINE_PASSWORD=${CI_JOB_TOKEN} TWINE_USERNAME=gitlab-ci-token python -m twine␣

→˓upload --repository-url ${CI_API_V4_URL}/projects/${CI_PROJECT_ID}/packages/pypi dist/*

. . . for access to packages within a group

Use the GROUP_URL instead of the PROJECT_ID.

12.5.2 Publishing the distribution package

You can publish your package with the help of twine:

python3 -m twine upload --repository gitlab dist/*

Note: If you try to publish a package that already exists with the same name and version, you will get the error 400
Bad Request; you will have to delete the existing package first.

12.5. GitLab Package Registry 87

Python basics, Release 24.1.0

12.5.3 Installing the package

You can install the latest version of your package for example with

pip install --index-url https://{NAME}:{PERSONAL_ACCESS_TOKEN}@ce.cusy.io/api/v4/
→˓projects/{PROJECT_ID}/packages/pypi/simple --no-deps {PACKAGE_NAME}

. . . or from the group level with

pip install --index-url https://{NAME}:{PERSONAL_ACCESS_TOKEN}@ce.cusy.io/api/v4/groups/
→˓{GROUP_ID}/-/packages/pypi/simple --no-deps {PACKAGE_NAME}

. . . or in the requirements.txt file with

--extra-index-url https://ce.cusy.io/api/v4/projects/{PROJECT_ID}/packages/pypi/simple
→˓{PACKAGE_NAME}

12.6 Templating

With Cookiecutter, file structures can be created which simplify the creation of Python packages significantly.

See also:
• Copier

12.6.1 CookieCutter features

• Cross-platform: Windows, Mac and Linux are supported

• works with Python 3.6, 3.7, 3.8 and PyPy3

• The project templates can be created for any programming language and any markup format: Python, JavaScript,
Ruby, ReST, CSS, HTML. Several languages can also be used in the same template.

• Templates can be easily adapted in the terminal:

$ cookiecutter https://github.com/veit/cookiecutter-namespace-template
full_name [Veit Schiele]:
...

• You can also use local templates:

$ cookiecutter cookiecutter-namespace-template

• Alternatively you can also use CookieCutter with Python:

$ bin/python
>>> from cookiecutter.main import cookiecutter
>>> cookiecutter('.https://github.com/veit/cookiecutter-namespace-template.git')
full_name [Veit Schiele]:
...

• Directory and file names can be assigned to templates, for example:

88 Chapter 12. Programme libraries

https://cookiecutter.readthedocs.io/
https://copier.readthedocs.io/en/stable/

Python basics, Release 24.1.0

{{cookiecutter.project_name}}/{{cookiecutter.namespace}}/{{cookiecutter.package_
→˓name}}/{{cookiecutter.project_slug}}.py

• The nesting depth is unlimited

• The templating is based on Jinja

• You can simply save your template variables in a cookiecutter.json file, for example:

{
"full_name": "Veit Schiele",
"email": "veit@example.org",
"github_username": "veit",
"project_name": "vsc.example",
"project_slug": "{{ cookiecutter.project_name.lower().replace(' ', '_').replace('-

→˓', '_') }}",
"namespace": "{{ cookiecutter.project_slug.split('.')[0] }}",
"package_name": "{{ cookiecutter.project_slug.split('.')[1] }}",
"project_short_description": "Python Namespace Package contains all you need to␣

→˓create a Python namespace package.",
"pypi_username": "veit",
"use_pytest": "y",
"command_line_interface": ["Click", "No command-line interface"],
"version": "0.1.0",
"create_author_file": "y",
"license": ["MIT license", "BSD license", "ISC license", "Apache Software License␣

→˓2.0", "GNU General Public License v3", "Not open source"]
}

• You can also save the values for several templates in ~/cookiecutterrc:

default_context:
full_name: "Veit Schiele"
email: "veit@cusy.io"
github_username: "veit"

cookiecutters_dir: "~/.cookiecutters/"

• CookieCutter templates loaded from a repository are usually stored in ~/.cookiecutters/. Then they can be
referenced directly via their directory name, e.g. with:

$ cookiecutter cookiecutter-namespace-package

12.6.2 Available templates

Python

cookiecutter-namespace-template
Namespace template for Python packages

cookiecutter-pypackage
Template for Python packages

cookiecutter-pytest-plugin
Minimal CookiexrCtter template for creating Pytest plugins

12.6. Templating 89

https://jinja.palletsprojects.com/
https://github.com/veit/cookiecutter-namespace-template
https://github.com/audreyr/cookiecutter-pypackage
https://github.com/pytest-dev/cookiecutter-pytest-plugin
https://docs.pytest.org/

Python basics, Release 24.1.0

cookiecutter-pylibrary
Comprehensive template for Python packages with support for tests and Deployments (C extension support for
cffi and Cython, test support for Tox, Pytest, Travis-CI, Coveralls, Codacy, and Code Climate, documentation
with Sphinx, packaging checks with scrutinizer, Isort etc.

cookiecutter-python-cli
Template for creating a Python CLI application with Click

widget-cookiecutter
Template for creating Jupyter widgets

Ansible

cookiecutter-ansible-role-ci
Template for Ansible roles

C

bootstrap.c
Template for projects written in C with Autotools

cookiecutter-avr
Template for AVR development

C++

BoilerplatePP
cmake template with unit tests for C ++ projects

Scala

cookiecutter-scala
Template for a Hello world example with a few libraries

cookiecutter-scala-spark
Template for an Apache-Spark application

LaTeX/XeTeX

pandoc-talk
Template for presentations with pandoc and XeTeX

12.6.3 Overview

A minimal CookieCutter template looks like this:

cookiecutter-namespace-template/
{{ cookiecutter.project_name }}/ <--- Project template

...
cookiecutter.json <--- Prompts & default values

For jsonexample, the file cookiecutter.json can look like this:

90 Chapter 12. Programme libraries

https://github.com/ionelmc/cookiecutter-pylibrary
https://cffi.readthedocs.io/
http://cython.org/
https://tox.readthedocs.io/
https://docs.pytest.org/
https://travis-ci.org/
https://github.com/coveralls-clients/coveralls-python
https://github.com/codacy/python-codacy-coverage/
https://github.com/codeclimate/python-test-reporter
http://www.sphinx-doc.org/
https://scrutinizer-ci.com/docs/guides/python/
https://github.com/PyCQA/isort
https://github.com/seanluong/cookiecutter-python-cli
https://click.palletsprojects.com/
https://github.com/jupyter-widgets/widget-cookiecutter
https://github.com/ferrarimarco/cookiecutter-ansible-role
https://github.com/vincentbernat/bootstrap.c
https://www.lrde.epita.fr/~adl/autotools.html
https://github.com/solarnz/cookiecutter-avr
https://github.com/Paspartout/BoilerplatePP
https://github.com/Plippe/cookiecutter-scala
https://github.com/jpzk/cookiecutter-scala-spark
https://spark.apache.org/
https://github.com/larsyencken/pandoc-talk
https://pandoc.org/
https://de.wikipedia.org/wiki/XeTeX

Python basics, Release 24.1.0

{
"full_name": "Veit Schiele",
"email": "veit@example.org",
"github_username": "veit",
"project_name": "vsc.example",
"project_slug": "{{ cookiecutter.project_name.lower().replace(' ', '_').replace('-', '_

→˓') }}",
"namespace": "{{ cookiecutter.project_slug.split('.')[0] }}",
"package_name": "{{ cookiecutter.project_slug.split('.')[1] }}",
"project_short_description": "Python Namespace Package contains all you need to create␣

→˓a Python namespace package.",
"pypi_username": "veit",
"use_pytest": "y",
"command_line_interface": ["Click", "No command-line interface"],
"version": "0.1.0",
"create_author_file": "y",
"license": ["MIT license", "BSD license", "ISC license", "Apache Software License 2.0",

→˓ "GNU General Public License v3", "Not open source"]
}

In addition, any number of directories and files can be created.

As a result you will get the following file structure:

my.package/ <--- Value corresponding to what you enter
at the project_name prompt

... <--- Files corresponding to those in your
cookiecutter’s
{{ cookiecutter.project_name }}/ directory

12.6.4 Installation

Requirements

• Python interpreter

• Path to the base directory for your Python packages

Make sure your bin bindirectory is in the path. Usually this is ~/.local/ for Linux and Mac OS or %APPDATA%\
Python. on Windows. You can find more information at site.USER_BASE.

For bash you can enter the path in your ~/.bash_profile:

export PATH=$HOME/.local/bin:$PATH

and then read the file with:

$ source ~/.bash_profile

Make sure the directory where CookieCutter will be installed is in your Path so you can go directly to it. To do
this, look for Environment Variables on your computer and add this directory to Path, for example %APPDATA%\
Python\Python3x\Scripts. Then you probably have to restart the session in order to be able to use the
environment variables.

12.6. Templating 91

https://docs.python.org/3/library/site.html#site.USER_BASE

Python basics, Release 24.1.0

See also:
Configuring Python

Installation

$ python -m pip install --user cookiecutter

12.6.5 Advanced usage

Hooks

You can write pre- or post-generate hooks. The Jinja template variables will be integrated into the scripts, for example:

if 'Not open source' == '{{ cookiecutter.license }}':
remove_file('LICENSE')

Variables, for example, can be validated in a pre-generate hook:

import re
import sys

MODULE_REGEX = r'^[_a-zA-Z][_a-zA-Z0-9]+$'

module_name = '{{ cookiecutter.module_name }}'

if not re.match(MODULE_REGEX, module_name):
print(f'ERROR: {module_name} is not a valid Python module name!')

exits with status 1 to indicate failure
sys.exit(1)

User config

If you use CookieCutter frequently, we recommend your own user config ~/cookiecutterrc, e.g.:

default_context:
full_name: "Veit Schiele"
email: "veit@cusy.io"
github_username: "veit"

cookiecutters_dir: "~/.cookiecutters/"
replay_dir: "~/.cookiecutter_replay/"

92 Chapter 12. Programme libraries

https://docs.python.org/3/using/windows.html#configuring-python

Python basics, Release 24.1.0

Replay

When calling cookiecutter a json file is created in /.cookiecutter_replay/, for example ~/.
cookiecutter_replay/cookiecutter-namespace-template.json:

{"cookiecutter": {"full_name": "Veit Schiele", "email": "veit@cusy.io", "github_username
→˓": "veit", "project_name": "vsc.example", "project_slug": "vsc.example", "namespace":
→˓"vsc", "package_name": "example", "project_short_description": "Python Namespace␣
→˓Package contains all you need to create a Python namespace package.", "pypi_username":
→˓"veit", "use_pytest": "y", "command_line_interface": "Click", "version": "0.1.0",
→˓"create_author_file": "y", "license": "MIT license", "_template": "https://github.com/
→˓veit/cookiecutter-namespace-template"}}

If you want to use this information without having to confirm them again in the command line, you can simply enter
the following:

$ cookiecutter --replay gh:veit/cookiecutter-namespace-template

Alternatively, the Python API can also be used:

from cookiecutter.main import cookiecutter
cookiecutter('gh:'veit/cookiecutter-namespace-template, replay=True)

This function is helpful if you want to create a project from an updated template, for example.

Selection variables

Selection variables offer various options when creating a project. Depending on the user’s choice, the template renders
it differently, e.g. if in the cookiecutter.json file the following selection is offered:

{
"license": ["MIT license", "BSD license", "ISC license", "Apache Software License 2.0",

→˓ "GNU General Public License v3", "Other/Proprietary License"]
}

This is interpreted in cookiecutter-namespace-template/{{cookiecutter.project_name}}/README.rst

{% set is_open_source = cookiecutter.license != 'Not open source' -%}
{% if is_open_source %}

...
{%- endif %}

{% if is_open_source %}
...

{% endif %}

and in cookiecutter-namespace-template/hooks/post_gen_project.py:

if 'Not open source' == '{{ cookiecutter.license }}':
remove_file('LICENSE')

12.6. Templating 93

Python basics, Release 24.1.0

12.6.6 cruft

One problem with cookiecutter templates is that projects based on older versions of the template become obsolete when
only the template is adapted to changing requirements over time. cruft tries to simplify the transfer of changes in the
Cookiecutter-Templates’s Git repository to projects derived from it.

The main features of cruft are:

• With cruft check you can quickly check if a project uses the latest version of a template. This check can also
be easily integrated into CI pipelines to ensure that your projects are in sync.

• cruft also automates the update of projects from cookiecutter templates.

Installation

$ python3.8 -m pip install cruft

Create a new project

To create a new project with cruft, you can run cruft create PROJECT_URL on the command line, for example:

$ cruft create https://github.com/veit/cookiecutter-namespace-template
full_name [Veit Schiele]:
...

cruft uses Cookiecutter for this and the only difference in the resulting output is a .cruft.json file that contains the
git hash of the template used as well as the specified parameters.

Tip: Certain files are rarely suitable for updating, for example test cases or __init__ files. You can tell cruft to
always skip updating these files in a project by creating the project with the arguments --skip vsc/__init__.py
--skip tests or manually adding them to a skip section in your .cruft.json file:

{
"template": "https://github.com/veit/cookiecutter-namespace-template",
"commit": "521d4b2aa603aec186cd7e542295edb458ba4552",
"skip": [

"vsc/__init__.py",
"tests"

],
"checkout": null,
"context": {
"cookiecutter": {
"full_name": "Veit Schiele",
...

}
},
"directory": null

}

94 Chapter 12. Programme libraries

https://cruft.github.io/cruft/

Python basics, Release 24.1.0

Updating a project

To update an existing project that was created with cruft, you can run cruft update in the root directory of the project.
If there are updates, cruft will first ask you to review them. If you accept the changes, cruft will apply them to your
project and update the .cruft.json file.

Checking a project

To see if a project has missed a template update, you can easily call cruft check. If the project is out of date, an
error and exit code 1 will be returned. cruft check can also be added to pre-commit framework and CI pipelines to
ensure projects don’t become unintentionally stale.

Linking an existing project

If you have an existing project that you created in the past with Cookiecutter directly from a template, you can cruft
link TEMPLATE_REPOSITORY to link it to the template it was created with, for example:

$ cruft link https://github.com/veit/cookiecutter-namespace-template

You can then specify the last commit of the template that updated the project, or accept the default to use the last
commit.

Show diff

Over time, your project may differ greatly from the actual cookiecutter template. cruft diff allows you to quickly
see what has changed in your local project compared to the template.

12.7 Upload package

Finally, you can deploy the package on the Python Package Index (PyPI) or another index, for example GitLab Package
Registry or devpi.

For this you should register on Test PyPI. Test-PyPI is a separate instance that is intended for testing and experi-
mentation. To set up an account there, go to https://test.pypi.org/account/register/. For more information, see Using
TestPyPI.

Now you can create the ~/.pypirc file:

[distutils]
index-servers=

test

[test]
repository = https://test.pypi.org/legacy/
username = veit

See also:
If you’d like to automate PyPI registration, please read Careful With That PyPI.

After you are registered, you can upload your Distribution Package with twine. To do this, however, you must first
install twine with:

12.7. Upload package 95

https://www.python4data.science/en/latest/productive/git/advanced/hooks/pre-commit.html
https://test.pypi.org/account/register/
https://packaging.python.org/guides/using-testpypi/
https://packaging.python.org/guides/using-testpypi/
https://glyph.twistedmatrix.com/2017/10/careful-with-that-pypi.html

Python basics, Release 24.1.0

$ python -m pip install --upgrade pip build twine
...
All dependencies are now up-to-date!

Note: Run this command before each release to ensure that all release tools are up to date.

Now you can create your Distribution Packages with:

$ cd /path/to/your/distribution_package
$ rm -rf build dist
$ python -m build

After installing Twine you can upload all archives in /dist to the Python Package Index with:

$ twine upload -r test -s dist/*

-r, --repository
The repository to upload the package.

In our case, the test section from the ~/.pypirc file is used.

-s, --sign
signs the files to be uploaded with GPG.

You will be asked for the password you used to register on Test PyPI. You should then see a similar output:

Uploading distributions to https://test.pypi.org/legacy/
Enter your username: veit
Enter your password:
Uploading example-0.0.1-py3-none-any.whl
100%|| 4.65k/4.65k [00:01<00:00, 2.88kB/s]
Uploading example-0.0.1.tar.gz
100%|| 4.25k/4.25k [00:01<00:00, 3.05kB/s]

Note: If you get an error message similar to

The user 'veit' isn't allowed to upload to project 'example'

you have to choose a unique name for your package:

1. change the name argument in the setup.py file

2. remove the dist directory

3. regenerate the archives

96 Chapter 12. Programme libraries

Python basics, Release 24.1.0

12.7.1 Check

Installation

You can use pip to install your package and check if it works. Create a new virtual environment and install your
package on Test PyPI:

$ python3 -m venv test_env
$ source test_env/bin/activate
$ pip install -i https://test.pypi.org/simple/ minimal_example

Note: If you have used a different package name, replace it with your package name in the command above.

pip should install the package from Test PyPI and the output should look something like this:

Looking in indexes: https://test.pypi.org/simple/
Collecting minimal_example
...

Installing collected packages: minimal_example
Successfully installed minimal_example-0.0.1

You can test whether your package has been installed correctly by importing the module and referencing the name
property that was previously ntered in __init__.py:

$ python
Python 3.7.0 (default, Aug 22 2018, 15:22:29)
...
>>> import minimal_example
>>> minimal_example.name
'minimal_example'

Note: The packages on Test-PyPI are only stored temporarily. If you want to upload a package to the real Python
Package Index (PyPI), you can do so by creating an account on pypi.org and following the same instructions, but using
twine upload dist/*.

README

Also check whether the README.rst is displayed correctly on the test PyPI page.

12.7.2 PyPI

Now register on the Python Package Index (PyPI) and make sure that two-factor authentication is activated by adding
the following to the ~/.pypirc file:

[distutils]
index-servers=

pypi
test

(continues on next page)

12.7. Upload package 97

https://blog.python.org/2019/05/use-two-factor-auth-to-improve-your.html

Python basics, Release 24.1.0

(continued from previous page)

[test]
repository = https://test.pypi.org/legacy/
username = veit

[pypi]
username = __token__

With this configuration, the name/password combination is no longer used for uploading but an upload token.

See also:
• PyPI now supports uploading via API token

• What is two factor authentication and how does it work on PyPI?

Finally, you can publish your package on PyPI:

$ twine upload -r pypi -s dist/*

Note: You cannot simply replace releases as you cannot re-upload packages with the same version number.

Note: Do not remove old versions from the Python Package Index.This only causes work for those who want to keep
using that version and then have to switch to old versions on GitHub. PyPI has a yank function that you can use instead.
This will ignore a particular version if it is not explicitly specified with == or ===.

See also:
• PyPI Release Checklist

12.7.3 GitHub Action

You can also create a GitHub action, which creates a package and uploads it to PyPI at every time a release is created.
Such a .github/workflows/pypi.yml file could look like this:

1 name: Publish Python Package
2

3 on:
4 release:
5 types: [created]
6

7 jobs:
8 test:
9 ...

10 package-and-deploy:
11 runs-on: ubuntu-latest
12 needs: [test]
13 steps:
14 - name: Checkout
15 uses: actions/checkout@v2
16 with:
17 fetch-depth: 0

(continues on next page)

98 Chapter 12. Programme libraries

https://pyfound.blogspot.com/2019/07/pypi-now-supports-uploading-via-api.html
https://pypi.org/help/#twofa
https://pypi.org/help/#yanked
https://cookiecutter-namespace-template.readthedocs.io/en/latest/pypi-release-checklist.html

Python basics, Release 24.1.0

(continued from previous page)

18 - name: Set up Python
19 uses: actions/setup-python@v5
20 with:
21 python-version: '3.11'
22 cache: pip
23 cache-dependency-path: '**/pyproject.toml'
24 - name: Install dependencies
25 run: |
26 python -m pip install -U pip
27 python -m pip install -U setuptools build twine wheel
28 - name: Build
29 run: |
30 python -m build
31 - name: Publish
32 env:
33 TWINE_PASSWORD: ${{ secrets.TWINE_PASSWORD }}
34 TWINE_USERNAME: ${{ secrets.TWINE_USERNAME }}
35 run: |
36 twine upload dist/*

Lines 3–5
This ensures that the workflow is executed every time a new GitHub release is created for the repository.

Line 12
The job waits for the test job to pass before it is executed.

See also:
• GitHub Actions

12.7.4 Trusted Publishers

Trusted Publishers is an alternative method for publishing packages on the PyPI . It is based on OpenID Connect and
requires neither a password nor a token. Only the following steps are required:

1. Add a Trusted Publishers on PyPI

Depending on whether you want to publish a new package or update an existing one, the process is slightly
different:

• to update an existing package, see Adding a trusted publisher to an existing PyPI project

• to publish a new package, there is a special procedure called Pending Publisher; see also Creating a PyPI
project with a trusted publisher

You can also use it to reserve a package name before you publish the first version. This allows you to ensure
that you can publish the package under the desired name.

To do this, you need to create a new Pending Publisher in pypi.org/manage/account/publishing/ with

– Name of the PyPI project

– GitHub repository owner

– Name of the workflow, for example publish.yml

– Name of the environment (optional), for example release

12.7. Upload package 99

https://docs.github.com/en/actions
https://docs.pypi.org/trusted-publishers/
https://docs.pypi.org/trusted-publishers/adding-a-publisher/
https://docs.pypi.org/trusted-publishers/creating-a-project-through-oidc/
https://docs.pypi.org/trusted-publishers/creating-a-project-through-oidc/
https://pypi.org/manage/account/publishing/

Python basics, Release 24.1.0

2. Create an environment for the GitHub actions

If we have specified an environment on PyPI , we must now also create it. This can be done in Settings →
Environments for the repository. The name of our environment is release.

3. Configure the workflow

To do this, we now create the .github/workflows/publish.yml file in our repository:

1 ...
2 jobs:
3 ...
4 deploy:
5 runs-on: ubuntu-latest
6 environment: release
7 permissions:
8 id-token: write
9 needs: [test]

10 steps:
11 - name: Checkout
12 ...
13 - name: Set up Python
14 ...
15 - name: Install dependencies
16 ...
17 - name: Build
18 ...
19 - name: Publish
20 uses: pypa/gh-action-pypi-publish@release/v1

Line 6
This is needed because we have configured an environment in PyPI .

Lines 7–8
They are required for the OpenID Connect token authentication to work.

Lines 19–20
The package uses the github.com/pypa/gh-action-pypi-publish action to publish the package.

12.8 cibuildwheel

cibuildwheel simplifies the creation of Python Wheels for the different platforms and Python versions through Contin-
uous Integration (CI) workflows. More precisely it builds manylinux, macOS 10.9+, and Windows wheels for CPython
and PyPy with GitHub Actions, Azure Pipelines, Travis CI, AppVeyor, CircleCI, or GitLab CI/CD.

In addition, it bundles shared library dependencies on Linux and macOS through auditwheel and delocate.

Finally, the tests can also run against the wheels.

See also:
• Docs

• GitHub

100 Chapter 12. Programme libraries

https://github.com/pypa/gh-action-pypi-publish
https://www.python4data.science/en/latest/productive/git/advanced/gitlab/ci-cd.html
https://github.com/pypa/auditwheel
https://github.com/matthew-brett/delocate
https://cibuildwheel.readthedocs.io/
https://github.com/pypa/cibuildwheel

Python basics, Release 24.1.0

12.8.1 GitHub Actions

To build Linux, macOS, and Windows wheels, create a .github/workflows/build_wheels.yml file in your GitHub
repo:

name: Build

on:
workflow_dispatch:
release:
types:
- published

workflow_dispatch
allows you to click a button in the graphical user interface to trigger a build. This is perfect for manually testing
wheels before a release, as you can easily download them from artifacts.

See also:
• workflow_dispatch

release
is executed when a tagged version is transferred.

See also:
• release

Now the wheels can be built with:

jobs:
build_wheels:
name: Build wheels on ${{ matrix.os }}
runs-on: ${{ matrix.os }}
strategy:
matrix:
os: [ubuntu-20.04, windows-2019, macos-11]

steps:
- uses: actions/checkout@v3

- name: Build wheels
uses: pypa/cibuildwheel@v2.15.0

This runs the CI workflow with the following default settings:

• package-dir: .

• output-dir: wheelhouse

• config-file: "{package}/pyproject.toml"

You can also extend the file to automatically upload the wheels to the Python Package Index (PyPI). For this, however,
you should first create a source distribution, for example with:

make_sdist:
name: Make SDist
runs-on: ubuntu-latest
steps:

(continues on next page)

12.8. cibuildwheel 101

https://github.blog/changelog/2020-07-06-github-actions-manual-triggers-with-workflow_dispatch/
https://docs.github.com/en/actions/using-workflows/events-that-trigger-workflows#release

Python basics, Release 24.1.0

(continued from previous page)

- uses: actions/checkout@v3
with:
fetch-depth: 0 # Optional, use if you use setuptools_scm
submodules: true # Optional, use if you have submodules

- name: Build SDist
run: pipx run build --sdist

- uses: actions/upload-artifact@v3
with:
path: dist/*.tar.gz

In addition, this GitHub workflow must be set in the PyPI settings of your project:

• Creating a PyPI project with a trusted publisher

• Adding a trusted publisher to an existing PyPI project

Now you can finally upload the artefacts of both jobs to the PyPI:

upload_all:
needs: [build_wheels, make_sdist]
environment: pypi
permissions:
id-token: write

runs-on: ubuntu-latest
if: github.event_name == 'release' && github.event.action == 'published'
steps:
- uses: actions/download-artifact@v3
with:
name: artifact
path: dist

- uses: pypa/gh-action-pypi-publish@release/v1

See also:
• Workflow syntax for GitHub Actions

12.8.2 GitLab CI/CD

To build Linux wheels with GitLab CI/CD, create a .gitlab-ci.yml file in your repository:

linux:
image: python:3.8
make a docker daemon available for cibuildwheel to use
services:
- name: docker:dind
entrypoint: ["env", "-u", "DOCKER_HOST"]
command: ["dockerd-entrypoint.sh"]

variables:
DOCKER_HOST: tcp://docker:2375/
DOCKER_DRIVER: overlay2

(continues on next page)

102 Chapter 12. Programme libraries

https://docs.pypi.org/trusted-publishers/creating-a-project-through-oidc
https://docs.pypi.org/trusted-publishers/adding-a-publisher
https://docs.github.com/en/actions/reference/workflow-syntax-for-github-actions
https://www.python4data.science/en/latest/productive/git/advanced/gitlab/ci-cd.html

Python basics, Release 24.1.0

(continued from previous page)

See https://github.com/docker-library/docker/pull/166
DOCKER_TLS_CERTDIR: ""

script:
- curl -sSL https://get.docker.com/ | sh
- python -m pip install cibuildwheel==2.15.0
- cibuildwheel --output-dir wheelhouse

artifacts:
paths:
- wheelhouse/

windows:
image: mcr.microsoft.com/windows/servercore:1809
before_script:

- choco install python -y --version 3.8.6
- choco install git.install -y
- py -m pip install cibuildwheel==2.15.0

script:
- py -m cibuildwheel --output-dir wheelhouse --platform windows

artifacts:
paths:
- wheelhouse/

tags:
- windows

See also:
• Keyword reference for the .gitlab-ci.yml file

12.8.3 Optionen

cibuildwheel can be configured either via environment variables or via a configuration file such as pyproject.toml,
for example:

[tool.cibuildwheel]
test-requires = "pytest"
test-command = "pytest {project}/tests"
build-verbosity = 1

support Universal2 for Apple Silicon:
[tool.cibuildwheel.macos]
archs = ["auto", "universal2"]
test-skip = ["*universal2:arm64"]

See also:
• cibuildwheel: Options

12.8. cibuildwheel 103

https://docs.gitlab.com/ee/ci/yaml/
https://cibuildwheel.readthedocs.io/en/stable/options/

Python basics, Release 24.1.0

12.8.4 Examples

• Coverage.py: .github/workflows/kit.yml

• matplotlib: .github/workflows/cibuildwheel.yml

• MyPy: .github/workflows/build.yml

• psutil: .github/workflows/build.yml

12.9 Binary Extensions

One of the features of the CPython interpreter is that in addition to executing Python code, it also has a rich C API
available for use by other software. One of the most common uses of this C API is to create importable C extensions
that allow things that are difficult to achieve in pure Python code.

12.9.1 Use Cases

The typical use cases for binary extensions can be divided into three categories:

Accelerator modules
These modules are stand-alone and are only created to run faster than the corresponding pure Python code.
Ideally, the accelerator modules always have a Python equivalent that can be used as a fallback if the accelerated
version is not available on a particular system.

The CPython standard library uses many accelerator modules.

Wrapper modules
These modules are created to make existing C interfaces available in Python. You can either make the underlying
C interfaces directly available or provide a Pythonic API that uses features of Python to make the API easier to
use.

The CPython standard library uses extensive wrapper modules.

Low-level system access
These modules are created to access functions of the CPython runtime environment, the operating system or the
underlying hardware. With platform-specific code, things can be achieved that would not be possible with pure
Python code.

A number of CPython standard library modules are written in C to access interpreter internals that are not avail-
able at the language level.

A particularly noteworthy property of C extensions is that they can release the Global Interpreter Lock (GIL) of
CPython for long-running operations, regardless of whether these operations are CPU or IO-bound.

Not all expansion modules fit exactly into the above categories. For example, the extension modules contained in
NumPy cover all three use cases:

• They move inner loops to C for speed reasons,

• wrap external libraries in C, FORTRAN and other languages and

• use low-level system interfaces of CPython and the underlying operating system to support the concurrent exe-
cution of vectorised operations and to precisely control the memory layout of objects created.

104 Chapter 12. Programme libraries

https://github.com/nedbat/coveragepy/blob/master/.github/workflows/kit.yml
https://github.com/matplotlib/matplotlib/blob/master/.github/workflows/cibuildwheel.yml
https://github.com/mypyc/mypy_mypyc-wheels/blob/master/.github/workflows/build.yml
https://github.com/giampaolo/psutil/blob/master/.github/workflows/build.yml
https://numpy.org/

Python basics, Release 24.1.0

12.9.2 Disadvantages

In the past, the main disadvantage of using binary extensions was that they made it difficult to distribute the software.
Today this disadvantage due to wheel is hardly present. However, some disadvantages remain:

• The installation from the sources remains complicated.

• Possibly there is no suitable wheel for the build of the CPython interpreter or alternative interpreters such as
PyPy, IronPython or Jython.

• The maintenance of the packages is more time-consuming because the maintainers not only have to be familiar
with Python but also with another language and the CPython C API. In addition, the complexity increases if a
Python fallback implementation is provided in addition to the binary extension.

• Finally, import mechanisms, such as direct import from ZIP files, often do not work for extension modules.

12.9.3 Alternatives

. . . to accelerator modules

If extensions modules are only used to make code run faster, a number of other alternatives should also be considered:

• Looks for existing optimised alternatives. The CPython standard library contains a number of optimised data
structures and algorithms, especially in the builtins and the modules collections and itertools.

Occasionally the Python Package Index (PyPI) also offers additional alternatives. Sometimes a third-party mod-
ule can avoid the need to create your own accelerator module.

• For long-running applications, the JIT-compiled PyPy interpreter can be a suitable alternative to the standard
CPython. The main difficulty with adopting PyPy is typically the dependence on other Binary Extensions mod-
ules. While PyPy emulates the CPython C API, modules that rely on it cause problems for the PyPy JIT, and
the emulation often exposes defects in extension modules that CPython tolerates. (often with reference counting
errors).

• Cython is a sophisticated static compiler that can compile most Python code into C-Extension modules. The ini-
tial compilation offers some speed increases (by bypassing the CPython interpreter level), and Cython’s optional
static typing functions can provide additional speed increases. For Python programmers, Cython offers a lower
barrier to entry relative to other languages such as C or C ++).

However, using Cython has the disadvantage of adding complexity to the distribution of the resulting application.

• Numba is a newer tool that uses the LLVM compiler infrastructure to selectively compile parts of a Python
application to native machine code at runtime. It requires LLVM to be available on the system the code is
running on. It can lead to considerable increases in speed, especially with vectorisable processes.

. . . to wrapper modules

The C-ABI (Application Binary Interface) is a standard for the common use of functions between several applications.
One of the strengths of the CPython C-API (Application Programming Interface) is that Python users can take advantage
of this functionality. However, manually wrapping modules is very tedious, so a number of other alternatives should
be considered.

The approaches described below do not simplify distribution, but they can significantly reduce the maintenance effort
compared to wrapper modules.

• Cython is useful not only for creating accelerator modules, but also for creating wrapper modules. Since the API
still needs to be wrapped by hand, it is not a good choice when wrapping large APIs.

12.9. Binary Extensions 105

https://www.pypy.org/
https://ironpython.net/
https://ironpython.net/
https://www.pypy.org/
https://cython.org/
http://numba.pydata.org/
https://llvm.org/
https://en.wikipedia.org/wiki/Application_binary_interface
https://en.wikipedia.org/wiki/API
https://cython.org/

Python basics, Release 24.1.0

• cffi is the project of some PyPy developers to give developers who already know both Python and C the possibility
to make their C modules available for Python applications. It makes wrapping a C module based on its header
files relatively easy, even if you are not familiar with C itself.

One of the main advantages of cffi is that it is compatible with the PyPy JIT so that CFFI wrapper modules can
fully participate in the PyPy tracing JIT optimisations.

• SWIG is a wrapper interface generator that combines a variety of programming languages, including Python,
with C and C ++ code.

• The ctypes module of the standard library is useful to get access to C interfaces, but if the header information is
not available, it suffers from the fact that it only works on the C ABI level and therefore no automatic consistency
check between the exported Interface and the Python code. In contrast, the alternatives above can all work on
the C API and use C header files to ensure consistency.

• pythoncapi_compat can be used to write a C extension that supports multiple Python versions with a single code
base. It consists of the header file pythoncapi_compat.h and the script upgrade_pythoncapi.py.

. . . for low-level system access

For applications that require low level system access, a binary extension is often the best option. This applies in
particular to the low level access to the CPython runtime, since some operations (such as releasing the Global Interpreter
Lock (GIL) are not permitted when the interpreter executes the code itself, especially when modules such as ctypes
or cffi are used to Get access to the relevant C-API interfaces.

In cases where the expansion module is manipulating the underlying operating system or hardware (instead of the
CPython runtime), it is sometimes better to write a normal C library (or a library in another programming language
such as C++ or Rust) that provides a C-compatible ABI) and then use one of the wrapping techniques described above
to make the interface available as an importable Python module.

12.9.4 Implementation

We now want to extend our dataprep package and integrate some C code. For this we use Cython to translate the
Python code from dataprep/src/dataprep/cymean.pyx into optimised C code during the build process. Cython
files have the suffix pyx and can contain both Python and C code.

However, we cannot currently use hatchling.build as a build backend, but instead fall back on a current version of
setuptools:

19 dependencies = [
20 "Cython",
21 "pandas",
22]

The setuptools use dataprep/setup.py to include non-Python files in a package.

setup(
ext_modules=cythonize("src/dataprep/cymean.pyx"),

Note: With extensionlib there is a toolkit for extension modules, which does not yet contain a hatchling plugin.

Note: Alternatively, you could use Meson or scikit-build:

106 Chapter 12. Programme libraries

https://cffi.readthedocs.io/
https://pypy.org/
http://www.swig.org/
https://github.com/python/pythoncapi_compat
https://cython.org/
https://github.com/ofek/extensionlib

Python basics, Release 24.1.0

[build-system]
requires = ["meson-python"]
build-backend = "mesonpy"

[build-system]
requires = ["scikit-build-core"]
build-backend = "scikit_build_core.build"

Since Cython itself is a Python package, it can simply be added to the list of dependencies in the dataprep/
pyproject.toml file:

2 requires = ["Cython", "setuptools>=61.0"]

Now you can run the build process with the pyproject-build command and check whether the Cython file ends up
in the package as expected:

$ pyproject-build .
* Creating venv isolated environment...
* Installing packages in isolated environment... (cython, setuptools>=40.6.0, wheel)
* Getting dependencies for sdist...
Compiling src/dataprep/cymean.pyx because it changed.
[1/1] Cythonizing src/dataprep/cymean.pyx
...
copying src/dataprep/cymean.c -> dataprep-0.1.0/src/dataprep
copying src/dataprep/cymean.pyx -> dataprep-0.1.0/src/dataprep
...
running build_ext
building 'dataprep.cymean' extension
...
Successfully built dataprep-0.1.0.tar.gz and dataprep-0.1.0-cp39-cp39-macosx_10_9_x86_64.
→˓whl

Finally, we can check our package with check-wheel-contents:

$ check-wheel-contents dataprep/dist/*.whl
dataprep/dist/dataprep-0.1.0-cp39-cp39-macosx_10_9_x86_64.whl: OK

Alternatively, you can install our dataprep package and use mean:

$ python -m pip install dataprep/dist/dataprep-0.1.0-cp39-cp39-macosx_10_9_x86_64.whl
$ python

>>> from dataprep.mean import mean
>>> from random import randint
>>> nums = [randint(1, 1_000) for _ in range(1_000_000)]
>>> mean(nums)
500097.867198

With the random.randint function a tlist of one million random numbers with values between 1 and 1000 was created.

See also:
The CPython Extending and Embedding guide contains an introduction to writing your own extension modules in C:
Extending Python with C or C++. However, please note that this introduction only discusses the basic tools for creating

12.9. Binary Extensions 107

https://docs.python.org/3/extending/
https://docs.python.org/3/extending/extending.html

Python basics, Release 24.1.0

extensions that are provided as part of CPython. Third-party tools such as Cython, cffi, SWIG, and Numba offer both
simpler and more sophisticated approaches to building C and C++ extensions for Python.

Python Packaging User Guide: Binary Extensions not only covers various available tools that simplify the creation of
binary extensions, but also explains the various reasons why creating an extension module might be desirable.

12.9.5 Creating binary extensions

Binary extensions for Windows

Before you can create a binary extension, you have to make sure that you have a suitable compiler available. On
Windows, Visual C is used to create the official CPython interpreter, and it should also be used to create compatible
binary extensions:

For Python 3.5 install Visual Studio Code with Python Extension

Note: Visual Studio is backwards compatible from Python 3.5, which means that any future version of
Visual Studio can create Python extensions for all Python versions from version 3.5.

Building with the recommended compiler on Windows ensures that a compatible C library is used throughout the
Python process.

Binary Extensions for Linux

Linux binaries must use a sufficiently old glibc to be compatible with older distributions. Distrowatch prepares in table
form which versions of the distributions deliver which library:

• Red Hat Enterprise Linux

• Debian

• Ubuntu

• . . .

The PYPA/Manylinux project facilitates the distribution of Binary extensions as Wheels for most Linux platforms. This
also resulted in PEP 513, which defines the manylinux1_x86_64 and manylinux1_i686 platform tags.

Binary Extensions for Mac

Binary compatibility on macOS is determined by the target system for the minimal implementation, e.g. 10.9, which
is defined in the environment variable MACOSX_DEPLOYMENT_TARGET. When creating with setuptools/distutils the de-
ployment target is specified with the flag --plat-name, for example macosx-10.9-x86_64. For more information
on deployment targets for Mac OS Python distributions, see the MacPython Spinning Wheels-Wiki.

108 Chapter 12. Programme libraries

http://cython.org/
https://cffi.readthedocs.io/
http://www.swig.org/
https://numba.pydata.org/
https://packaging.python.org/guides/packaging-binary-extensions/
https://code.visualstudio.com/
https://marketplace.visualstudio.com/items?itemName=ms-python.python
https://distrowatch.com/
https://distrowatch.com/table.php?distribution=redhat
https://distrowatch.com/table.php?distribution=debian
https://distrowatch.com/table.php?distribution=ubuntu
https://github.com/pypa/manylinux
https://peps.python.org/pep-0513/
https://github.com/MacPython/wiki/wiki/Spinning-wheels

Python basics, Release 24.1.0

12.9.6 Deployment of binary extensions

In the following, the deployment on the Python Package Index (PyPI) or another index will be described.

Note: When deploying on Linux distributions, it should be noted that these make demands on the specific build
system. Therefore, Source Distributions (sdist) should also be provided in addition to Wheels.

See also:
• Deploying Python applications

• Supporting Windows using Appveyor

12.10 Glossary

build
build is a PEP 517-compatible Python package builder. It provides a CLI for building packages and a Python
API.

Docs | GitHub | PyPI

built distribution
bdist

A structure of files and metadata that only needs to be moved to the correct location on the target system during
installation. wheel is such a format, but not distutils Source Distribution that require a build step.

cibuildwheel
cibuildwheel is a Python package that creates wheels for all common platforms and Python versions on most CI
systems.

Docs | GitHub | PyPI

See also:
multibuild

conda
Package management tool for the Anaconda distribution from Continuum Analytics. It’s specifically aimed at
the scientific community, particularly Windows, where installing binary extensions is often difficult.

Conda does not install packages from PyPI and can only install from the official Continuum repositories or from
anaconda.org or local (e.g. intranet) package servers. Note, however, that Pip can be installed in conda and can
work side by side to manage distributions of PyPI.

See also:
• Conda: Myths and Misconceptions

• Conda build variants

devpi
devpi is a powerful PyPI compatible server and PyPI proxy cache with a command line tool to enable packaging,
testing and publishing activities.

Docs | GitHub | PyPI

distribution package
A versioned archive file that contains Python packages, modules, and other resource files used to distribute a
release.

12.10. Glossary 109

https://packaging.python.org/discussions/deploying-python-applications/
https://packaging.python.org/guides/supporting-windows-using-appveyor/
https://peps.python.org/pep-0517/
https://pypa-build.readthedocs.io/en/stable/index.html
https://github.com/pypa/build
https://pypi.org/project/build
https://cibuildwheel.readthedocs.io/
https://github.com/pypa/cibuildwheel
https://pypi.org/project/cibuildwheel
https://docs.continuum.io/anaconda/index.html
https://www.anaconda.com/
https://anaconda.org/
https://jakevdp.github.io/blog/2016/08/25/conda-myths-and-misconceptions/
https://docs.conda.io/projects/conda-build/en/latest/resources/variants.html
https://devpi.net/
http://doc.devpi.net/latest/
https://github.com/devpi/devpi
https://pypi.org/project/devpi

Python basics, Release 24.1.0

distutils
Python standard library package that provides support for bootstrapping pip into an existing Python installation
or virtual environment.

Docs | GitHub

egg
A built distribution format introduced by setuptools that is now being replaced by wheel. For more information,
see The Internal Structure of Python Eggs and Python Eggs.

enscons
enscons is a Python packaging tool based on SCons. It builds pip-compatible source distributions and wheels
without using distutils or setuptools, including distributions with C extensions. enscons has a different architec-
ture and philosophy than distutils, as it adds Python packaging to a general build system. enscons can help you
build sdists and wheels.

GitHub | PyPI

Flit
Flit provides an easy way to build pure Python packages and modules and upload them to the Python Package
Index. Flit can generate a configuration file to quickly set up a project, create a source distribution and wheel,
and upload them to PyPI.

Flit uses pyproject.toml to configure a project. Flit does not rely on tools like setuptools to create distributions,
or on twine to upload them to PyPI .

Docs | GitHub | PyPI

Hatch
Hatch is a command line tool that can be used to configure and version packages and specify dependencies. The
plugin system allows you to easily extend the functionality.

Docs | GitHub | PyPI

hatchling
Build backend of hatch, which can also be used to publish on the Python Package Index.

import package
A Python module that can contain other modules or recursively other packages.

maturin
Formerly pyo3-pack, is a PEP 621-compatible build tool for binary extensions in Rust.

meson-python
Build backend that uses the Meson build system. It supports a variety of languages, including C, and is able to
meet the requirements of most complex build configurations.

Docs | GitHub | PyPI

module
The basic unit of code reusability in Python, which exists in one of two types:

pure module
A module written in Python contained in a single .py file (and possibly associated .pyc- and/or .pyo
files).

extension module
Usually a single dynamically loadable precompiled file, for example a common object file (.so).

multibuild
multibuild is a set of CI scripts for building and testing Python wheels for Linux, macOS and Windows.

110 Chapter 12. Programme libraries

https://docs.python.org/3/library/ensurepip.html
https://github.com/pypa/distutils
https://setuptools.readthedocs.io/en/latest/deprecated/python_eggs.html
http://peak.telecommunity.com/DevCenter/PythonEggs
http://scons.org/
https://github.com/dholth/enscons
https://pypi.org/project/enscons
https://flit.readthedocs.io/en/latest/
https://github.com/pypa/flit
https://pypi.org/project/flit
https://hatch.pypa.io/latest/
https://github.com/pypa/hatch
https://pypi.org/project/hatch
https://peps.python.org/pep-0621/
https://mesonbuild.com
https://meson-python.readthedocs.io/en/latest/
https://github.com/mesonbuild/meson-python
https://pypi.org/project/meson-python/

Python basics, Release 24.1.0

See also:
cibuildwheel

pdm
Python package manager with PEP 582 support. It installs and manages packages without the need to create a
virtual environment. It also uses pyproject.toml to store project metadata as defined in PEP 621.

Docs | GitHub | PyPI

pex
Bibliothek und Werkzeug zur Erzeugung von Python EXecutable (.pex)-Dateien, die eigenständige Python-
Umgebungen sind. .pex-Dateien sind Zip-Dateien mit #!/usr/bin/env python und einer speziellen
__main__.py-Datei, die das Deployment von Python-Applikationen stark vereinfachen können.

Docs | GitHub | PyPI

pip
Popular tool for installing Python packages included in new versions of Python.

It provides the essential core functions for searching, downloading and installing packages from the Python Pack-
age Index and other Python package directories, and can be integrated into a variety of development workflows
via a command line interface (CLI).

Docs | GitHub | PyPI

pip-tools
Set of tools that can keep your builds deterministic and still up to date with new versions of your dependencies.

Docs | GitHub | PyPI

Pipenv
Pipenv bundles Pipfile, pip and virtualenv into a single toolchain. It can automatically import the
requirements.txt and also check the environment for CVEs using safety. Finally, it also facilitates the unin-
stallation of packages and their dependencies.

Docs | GitHub | PyPI

Pipfile
Pipfile.lock

Pipfile and Pipfile.lock are a higher-level, application-oriented alternative to pip’s requirements.txt
file. The PEP 508 Environment Markers are also supported.

Docs | GitHub

pipx
pipx helps you avoid dependency conflicts with other packages installed on the system.

Docs | GitHub | PyPI

piwheels
Website and underlying software that fetches source distribution packages from PyPI and compiles them into
binary wheels optimised for installation on Raspberry Pis.

Home | Docs | GitHub

poetry
An all-in-one solution for Python-only projects. It replaces setuptools, venv/pipenv, pip, wheel and twine. How-
ever, it makes some bad default assumptions for libraries and the pyproject.toml configuration is not standard
compliant.

Docs | GitHub | PyPI

12.10. Glossary 111

https://peps.python.org/pep-0582/
https://peps.python.org/pep-0621/
https://pdm.fming.dev/
https://github.com/pdm-project/pdm/
https://pypi.org/project/pdm
https://pex.readthedocs.io/en/latest/
https://github.com/pantsbuild/pex/
https://pypi.org/project/pex
https://pip.pypa.io/
https://github.com/pypa/pip
https://pypi.org/project/pip/
https://pip-tools.readthedocs.io/en/latest/
https://github.com/jazzband/pip-tools/
https://pypi.org/project/pip-tools/
https://pyup.io/safety
https://pipenv.pypa.io/en/latest/
https://github.com/pypa/pipenv
https://pypi.org/project/pipenv
https://peps.python.org/pep-0508/#environment-markers
https://pipenv.pypa.io/en/latest/pipfile/
https://github.com/pypa/pipfile
https://pypa.github.io/pipx/
https://github.com/pypa/pipx
https://pypi.org/project/pipx/
https://www.piwheels.org/
https://piwheels.readthedocs.io/en/latest/index.html
https://github.com/piwheels/piwheels/
https://python-poetry.org/
https://github.com/python-poetry/poetry
https://pypi.org/project/poetry/

Python basics, Release 24.1.0

pybind11
This is setuptools, but with a C++ extension and wheels generated by cibuildwheel.

Docs | GitHub | PyPI

pypi.org
pypi.org is the domain name for the Python Package Index (PyPI). In 2017 it replaced the old index domain name
pypi.python.org. He is supported by warehouse.

pyproject.toml
Tool-independent file for the specification of projects defined in PEP 518.

Docs

See also:
• pyproject.toml

Python Package Index
PyPI

pypi.org is the standard package index for the Python community. All Python developers can use and distribute
their distributions.

Python Packaging Authority
PyPA

The Python Packaging Authority is a working group that manages several software projects for packaging, dis-
tributing and installing Python libraries. However, the goals stated in PyPA Goals were created during discussions
around PEP 516, PEP 517 and PEP 518, which allowed competing workflows with the pyproject.toml-based
build system that do not need to be interoperable.

readme_renderer
readme_renderer is a library used to render documentation from markup languages like Markdown or reStruc-
turedText into HTML. You can use it to check if your package descriptions are displayed correctly on PyPI .

GitHub | PyPI

release
The snapshot of a project at a specific point in time, identified by a version identifier.

One release can result in several Built Distributions.

scikit-build
Build system generator for C-, C++-, Fortran- and Cython extensions that integrates setuptools, wheel and pip.
It uses CMake internally to provide better support for additional compilers, build systems, cross-compilation and
finding dependencies and their associated build requirements. To speed up and parallelise the creation of large
parallelisation, Ninja can also be installed. can be installed.

Docs | GitHub | PyPI

setuptools
setuptools are the classic build system, which is very powerful, but with a steep learning curve and high config-
uration effort. From version 61.0.0 setuptools also support pyproject.toml files.

Docs | GitHub | PyPI

See also:
Packaging and distributing projects

shiv
Command line utility for building Python zip apps as described in PEP 441, but additionally with all dependen-
cies.

Docs | GitHub | PyPI

112 Chapter 12. Programme libraries

https://pybind11.readthedocs.io/en/stable/
https://github.com/pybind/pybind11
https://pypi.org/project/pybind11/
https://pypi.org/
https://peps.python.org/pep-0518/
https://pip.pypa.io/en/stable/reference/build-system/pyproject-toml/
https://www.pypa.io/en/latest/
https://www.pypa.io/en/latest/future/
https://peps.python.org/pep-0516/
https://peps.python.org/pep-0517/
https://peps.python.org/pep-0518/
https://github.com/pypa/readme_renderer/
https://pypi.org/project/readme-renderer/
https://scikit-build.readthedocs.io/en/latest/
https://github.com/scikit-build/scikit-build/
https://pypi.org/project/scikit-build
https://setuptools.readthedocs.io/en/latest/
https://github.com/pypa/setuptools
https://pypi.org/project/setuptools
https://packaging.python.org/guides/distributing-packages-using-setuptools/
https://peps.python.org/pep-0441/
https://shiv.readthedocs.io/en/latest/
https://github.com/linkedin/shiv
https://pypi.org/project/shiv/

Python basics, Release 24.1.0

source distribution
sdist

A distribution format (typically generated using) python setup.py sdist.

It provides metadata and the essential source files required for installation with a tool like Pip or for generating
built distributions.

Spack
Flexible package manager that supports multiple versions, configurations, platforms and compilers. Any number
of versions of packages can co-exist on the same system. Spack is designed for rapid creation of high-performance
scientific applications on clusters and supercomputers.

Docs | GitHub

See also:
• Spack

trove-classifiers
trove-classifiers are classifiers used in the Python Package Index to systematically describe projects and make
them easier to find. On the other hand, they are a package that contains a list of valid and obsolete classifiers that
can be used for verification.

Docs | GitHub | PyPI

twine
Command line programme that passes programme files and metadata to a web API. This allows Python packages
to be uploaded to the Python Package Index.

Docs | GitHub | PyPI

venv
Package that is in the Python standard library as of Python 3.3 and is intended for creating virtual environments.

Docs | GitHub

virtualenv
Tool that uses the path command line environment variable to create isolated Python virtual environments,
similar to venv, but provides additional functionality for configuration, maintenance, duplication and debugging.

As of version 20.22.0, virtualenv no longer supports Python versions 2.7, 3.5 and 3.6.

Virtual environment
An isolated Python environment that allows packages to be installed for a specific application rather than system-
wide.

See also:
• Virtual environments

• Creating Virtual Environments

Warehouse
The current code base that powers the Python Package Index (PyPI). It is hosted on pypi.org.

Docs | GitHub

wheel
Distribution format introduced with PEP 427. It is intended to replace the Egg format and is supported by current
pip installations.

C extensions can be provided as platform-specific wheels for Windows, macOS and Linux on PyPI . This has the
advantage for the users of the package that they don’t have to compile during the installation.

Home | Docs | PEP 427 | GitHub | PyPI |

12.10. Glossary 113

https://spack.readthedocs.io/en/latest/index.html
https://github.com/spack/spack
https://www.python4data.science/en/latest/productive/envs/spack/index.html
https://pypi.org/classifiers/
https://github.com/pypa/trove-classifiers
https://pypi.org/project/trove-classifiers/
https://twine.readthedocs.io/en/latest/
https://github.com/pypa/twine
https://pypi.org/project/twine
https://docs.python.org/3/library/venv.html
https://github.com/python/cpython/tree/main/Lib/venv
https://packaging.python.org/tutorials/installing-packages/#creating-and-using-virtual-environments
https://warehouse.pypa.io/
https://github.com/pypa/warehouse
https://peps.python.org/pep-0427/
https://pythonwheels.com/
https://wheel.readthedocs.io/
https://peps.python.org/pep-0427/
https://github.com/pypa/wheel
https://pypi.org/project/wheel/

Python basics, Release 24.1.0

See also:
• wheels

whey
Simple Python wheel builder with automation options for trove-classifiers.

114 Chapter 12. Programme libraries

CHAPTER

THIRTEEN

OBJECT ORIENTATION

Python offers full support for object-oriented programming OOP (object-oriented programming). The following listing
is an example that could be the beginning of a simple shapes module for a drawing program.

13.1 Classes

A class in Python is actually a data type. All of Python’s built-in data types are classes, and Python provides you with
powerful tools to manipulate every aspect of a class’s behaviour. You can define a class with the class statement:

>>> class MyClass:
... STATEMENTS

MyClass
Class identifiers are usually written in capital letters, that mean the first letter of each word is capitalised to
emphasise the identifiers.

STATEMENTS
is a list of Python statements – usually variable assignments and function definitions. However, no assignments
or function definitions are required; it can just be a single pass statement.

After you have defined the class, you can create a new object of the class type (an instance of the class) by calling the
class name as a function:

>>> instance = MyClass()

Class instances can be used as structures or data sets. However, unlike C structures or Java classes, the data fields of
an instance do not have to be declared in advance. The following short example defines a class called Square, creates
a Square instance, assigns a value to the edge length and then uses this value to calculate the total edge length:

>>> my_square = Square()
>>> my_square.length = 3
>>> print(f"The perimeter of the square is {4 * my_square.length}.")
The perimeter of the square is 12.

As in Java and many other languages, the fields of an instance are addressed using dot notation.

You can initialise fields of an instance automatically by including an __init__ initialisation method in the class. This
function is executed each time an instance of the class is created with this new instance as the first argument self.
Unlike in Java and C++, Python classes can also have only one __init__ method. In the following example, squares
with an edge length of 1 are created by default:

115

https://en.wikipedia.org/wiki/Object-oriented_programming
https://docs.python.org/3/tutorial/classes.html

Python basics, Release 24.1.0

1 >>> class Square:
2 ... def __init__(self):
3 ... self.length = 1
4 ...
5 >>> my_square = Square()
6 >>> print(f"The perimeter of the square is {4 * my_square.length}.")
7 The perimeter of the square is 4.

Line 2
By convention, self is always the name of the first argument of __init__. self is set to the newly created
Square instance when __init__ is executed.

Line 5
Next, the code uses the class definition. You first create a Square instance object.

Line 6
This line takes advantage of the fact that the length field is already initialised.

You can also overwrite the length field so that the last line gives a different result than the previous print
statement:

>>> my_square.length = 3
>>> print(f"The perimeter of the square is {4 * my_square.length}.")
The perimeter of the square is 12.

13.2 Variables

13.2.1 Instance variables

In the previous example, length is an instance variable of Square instances, which means that each instance of the
class Square has its own copy of length, and the value stored in this copy may be different from the values stored in
the length variable in other instances. In Python, you can create instance variables as needed by assigning them to
the field of a class instance. If the variable does not already exist, it will be created automatically.

All uses of instance variables, both assignment and access, require explicit mention of the instance they contain, that
is, instance.variable. A reference to a variable in itself is not a reference to an instance variable, but to a local
variable in the executing method. This is different from C++ and Java, where instance variables are referenced in the
same way as local function variables of the method. Python requires explicit mention of the contained instance here,
and this enables a clear distinction between instance variables and local function variables.

13.2.2 Class variables

A class variable is a variable associated with a class, not an instance of a class, that can be accessed by all instances of
the class. A class variable can be used to store some class-level information, such as how many instances of the class
were created at a particular time. Python provides class variables, although using them requires a little more effort than
in most other languages. You also need to be aware of an interaction between class and instance variables.

A class variable is created by an assignment in the class, but outside the __init__ function. After it is created, it can
be seen by all instances of the class. You can use a class variable to make a value for pi accessible to all instances of
the Circle class:

116 Chapter 13. Object Orientation

Python basics, Release 24.1.0

>>> class Circle:
... pi = 3.14159
... def __init__(self, diameter):
... self.diameter = diameter
... def circumference(self):
... return self.diameter * Circle.pi

Once you have entered this definition, you can query pi with:

>>> Circle.pi
3.14159

Note: The class variable is linked to and contained within the class that defines it. You access Circle.pi in this
example before any Circle instances have been created. It is obvious that Circle.pi exists independently of specific
instances of the Circle class.

You can also access a class variable from a method of a class using the class name. You do this in the definition of
Circle.circumference, where the circumference function contains a special reference to Circle.pi:

>>> c = Circle(3)
>>> c.circumference()
9.424769999999999

However, it is unpleasant that the class name Circle is used in the circumferencemethod to address the class variable
pi. You can avoid this by using the special __class__ attribute, which is available for all Python class instances. This
attribute returns the class to which the instance belongs, for example:

>>> Circle
<class '__main__.Circle'>
>>> c.__class__
<class '__main__.Circle'>

The Circle class is internally represented by an abstract data structure, and this data structure is exactly what is
obtained by the __class__ attribute of c, an instance of the Circle class. In this example, you can retrieve the value
of Circle.pi from c without explicitly referring to the name of the Circle class:

>>> c.__class__.pi
3.14159

You can use this code internally in the circumference method to get rid of the explicit reference to the Circle class;
replace Circle.pi with self.__class__.pi.

There is a little oddity about class variables that might confuse you if you are not aware of it.

Warning: If Python searches for an instance variable and does not find an instance variable with that name, it will
search for and return the value in a class variable with the same name. Only if no matching class variable can be
found does Python return an error. This can be used to efficiently implement default values for instance variables;
however, this also easily leads to accidentally referring to an instance variable instead of a class variable without an
error being reported.

First, you can refer to the variable c.pi, even though c has no associated instance variable called pi. Python first
tries to find such an instance variable and only when it cannot find an instance variable does it look for a class
variable pi in Circle:

13.2. Variables 117

Python basics, Release 24.1.0

>>> c1 = Circle(1)
>>> c1.pi
3.14159

If you now find that your specification for pi has been rounded too early and you want to replace it with a more
precise specification, you might be inclined to change it as follows:

>>> c1.pi = 3.141592653589793
>>> c1.pi
3.141592653589793

However, you have now only added a new instance variable pi to c1. The class variable Circle.pi and all other
instances derived from it still have only five decimal places:

>>> Circle.pi
3.14159
>>> c2 = Circle(2)
>>> c1.pi
3.14159

13.3 Methods

A method is a function associated with a particular class. You have already seen the special __init__ method that is
called when a new instance is created. In the following example, you define another method, circumference, for the
class Square; this method can be used to calculate and return the circumference for any Square instance. Like most
custom methods, circumference is called with a syntax similar to accessing instance variables:

>>> class Square:
... def __init__(self):
... self.length = 1
... def circumference(self):
... return 4 * self.length
...
>>> s = Square()
>>> s.length = 5
>>> print(s.circumference())
20

The syntax for method calls consists of an instance followed by a dot followed by the method to be called on the instance.
If a method is called in this way, it is a bound method call. However, a method can also be called as an unbound method
by accessing it through its containing class. This practice is less practical and is almost never used because the first
argument of a method called in this way must be an instance of the class in which the method is defined and is less
clear:

>>> print(Square.circumference(s))
20

Like __init__, the circumference method is defined as a function within the class. The first argument of each
method is the instance from which or on which it was called, by convention called self. In many languages, the
instance is called this and is never explicitly passed.

Methods can be called with arguments if the method definitions accept those arguments. This version of Square adds

118 Chapter 13. Object Orientation

Python basics, Release 24.1.0

an argument to the __init__ method so that you can create squares with a specific edge length without having to set
the edge length after creating a square:

>>> class Square:
... def __init__(self, length):
... self.length = length
... def circumference(self):
... return 4 * self.length

Warning: self.length and length are not the same!

• self.length is the instance variable called length

• length is the local function parameter

In practice, you would probably refer to the local function parameter as lng or l to avoid confusion.

With this definition of Square, you can create squares with arbitrary edge lengths with a call to the Square class. In
the following, a square with edge length 3 is created:

s = Square(3)

All of Python’s standard functions – standard arguments, additional arguments, keyword arguments, etc. – can be used
with methods. You could have defined the first line of __init__ as follows:

... def __init__(self, length=1):

Then the call to Square would work with or without an additional argument; Square() would return a square with
edge length 1 and Square(3) would return a square with edge length 3.

For a method call instance.method(arg1, arg2, ...), Python converts it to a normal function call by applying
the following rules:

1. Search for the method name in the instance namespace. If a method has been changed or added for this instance,
it is called in preference to methods in the class.

2. If the method is not found in the instance namespace, the method is searched in the class. In the previous
examples, class is the Square type of the instance s.

3. If the method is still not found, it is searched for in a superclass, see also Inheritance.

4. If the method is found, it is called as a normal Python function, using instance as the first argument of the function
and shifting all other arguments in the method call one space to the right. Thus instance.method(arg1,
arg2, ...) becomes class.method(instance, arg1, arg2, ...).

13.3.1 Static methods

Just like in Java, you can call static methods even if no instance of that class has been created. To create a static method,
use the @staticmethod decorator:

1 """circle module: contains the 'Circle' class"""
2

3

4 class Circle:
5 """Circle class.

(continues on next page)

13.3. Methods 119

https://docs.python.org/3/library/functions.html#staticmethod

Python basics, Release 24.1.0

(continued from previous page)

6

7 The class variable 'circles' contains a list of all circle instances.
8

9 """
10

11 circles = []
12 pi = 3.14159
13

14 def __init__(self, diameter=1):
15 """Create a Circle instance with a given diameter and add an initialised
16 circle to the circles list."""
17 self.diameter = diameter
18 self.__class__.circles.append(self)
19

20 def circumference(self):
21 return self.diameter * self.__class__.pi
22

23 @staticmethod
24 def circumferences():
25 """Static method to sum all circle circumferences."""
26 csum = 0
27 for c in Circle.circles:
28 csum = csum + c.circumference()
29 return csum

Line 11
defines the class variable circles as an initially empty list of all Circle instances.

Line 14
adds initialised Circle instances to the circles list.

>>> import circle
>>> c1 = circle.Circle(1)
>>> c2 = circle.Circle(2)
>>> circle.Circle.circumferences()
9.424769999999999
>>> c2.diameter = 3
>>> circle.Circle.circumferences()
12.56636

13.3.2 Class methods

Class methods are similar to static methods in that they can be called before an object of the class has been instanti-
ated. However, the class to which they belong is implicitly passed to the class methods as the first parameter:

23 @classmethod
24 def circumferences(cls):
25 """Class method to sum all circle circumferences."""
26 csum = 0
27 for c in cls.circles:
28 csum = csum + c.circumference()
29 return csum

120 Chapter 13. Object Orientation

https://docs.python.org/3/library/functions.html#classmethod

Python basics, Release 24.1.0

Line 23
The @classmethod decorator is used before the def method.

Line 24
The class parameter is traditionally cls.

Line 27
You can use cls instead of self.__class__.

By using a class method instead of a static method, you don’t have to hardcode the class name in
circumferences.

>>> import circle_cm
>>> c1 = circle_cm.Circle(1)
>>> c2 = circle_cm.Circle(2)
>>> circle_cm.Circle.circumferences()
9.424769999999999

13.4 Inheritance

Inheritance in Python is simpler and more flexible than inheritance in compiled languages such as Java and C++ because
the dynamic nature of Python does not impose as many restrictions on the language.

To see how inheritance is used in Python, let’s start with the Square and Circle classes we discussed earlier and
generalise them.

If we now want to use these classes in a drawing program, we need to define where on the drawing surface an instance
should be located. We can do this by defining x and y coordinates for each instance:

1 >>> class Square:
2 ... def __init__(self, length=1, x=0, y=0):
3 ... self.length = length
4 ... self.x = x
5 ... self.y = y
6 ...
7 >>> class Circle:
8 ... def __init__(self, diameter=1, x=0, y=0):
9 ... self.diameter = diameter

10 ... self.x = x
11 ... self.y = y

This approach works, but leads to a lot of repetitive code when you increase the number of shape classes, as you
probably want every shape to have this positional information. This is a standard situation for using inheritance in
object-oriented languages. Instead of defining the x and y variables in each shape class, you can abstract them into a
general shape class and have each class that defines a particular shape inherit from that general class. In Python, this
technique looks like this:

1 >>> class Form:
2 ... def __init__(self, x=0, y=0):
3 ... self.x = x
4 ... self.y = y
5 ...
6 >>> class Square(Form):
7 ... def __init__(self, length=1, x=0, y=0):

(continues on next page)

13.4. Inheritance 121

Python basics, Release 24.1.0

(continued from previous page)

8 ... super().__init__(x, y)
9 ... self.length = length

10 ...
11 >>> class Circle(Form):
12 ... def __init__(self, diameter=1, x=0, y=0):
13 ... super().__init__(x, y)
14 ... self.diameter = diameter

Lines 6 and 11
Square and Circle inherit from the Form class.

Lines 8 and 13
call the __init__ method of the Form class.

There are generally two requirements when using an inherited class in Python, both of which you can see in the code
of the Circle and Square classes:

1. The first requirement is to define the inheritance hierarchy, which you do by specifying the classes that are
inherited from in parentheses immediately after the name of the class, which is defined with the class keyword:
Circle and Square both inherit from Form.

2. The second element is the explicit call to the __init__ method of the inherited class. This is not done au-
tomatically in Python, but mostly through the super function, more precisely through the lines super().
__init__(x,y). This code calls the initialisation function of Form with the instance to be initialised and the
corresponding arguments. Otherwise, the instance variables x and ywould not be set for the instances of Circle
and Square.

Inheritance also comes into play when you try to use a method that is not defined in the base classes but in the superclass.
To see this effect, define another method in the Form class called move that moves a shape in the x and y coordinates.
The definition for Form is now:

1 >>> class Form:
2 ... def __init__(self, x=0, y=0):
3 ... self.x = x
4 ... self.y = y
5 ... def move(self, delta_x, delta_y):
6 ... self.x = self.x + delta_x
7 ... self.y = self.y + delta_y

If you take the parameters delta_x and delta_y of the method move in the __init__ methods of Circle and
Square, you can for example execute the following interactive session:

>>> c = Circle(3)
>>> c.move(4, 5)
>>> c.x
4
>>> c.y
5

The class Circle in the example does not have a move method defined directly in itself, but since it inherits from a
class that implements move, all instances of Circle can use the move method. In OOP terms, one could say that all
Python methods are virtual – that is if a method does not exist in the current class, the list of superclasses is searched
for the method and the first one found is used.

122 Chapter 13. Object Orientation

Python basics, Release 24.1.0

13.5 Summary

The points made so far, are the basics of using classes and objects in Python. I will now summarise these basics in a
single example:

1. First, we create a base class:

4 class Form:
5 """Form class: has method move"""
6

7 def __init__(self, x, y):
8 self.x = x
9 self.y = y

10

11 def move(self, deltaX, deltaY):
12 self.x = self.x + deltaX
13 self.y = self.y + deltaY

Line 7
The __init__ method requires one instance (self) and two parameters.

Lines 8 and 9
The two instance variables x and y, which are accessed via self.

Line 11
The move method requires one instance (self) and two parameters.

Lines 12 and 13
Instance variables that are set in the move method.

2. Next, create a subclass that inherits from the base class Form:

16 class Square(Form):
17 """Square Class:inherits from Form"""
18

19 def __init__(self, length=1, x=0, y=0):
20 super().__init__(x, y)
21 self.length = length

Line 16
The class Square inherits from the class Form.

Line 19
Square’s __init__ takes one instance (self) and three parameters, all with defaults.

Line 20
Circle’s __init__ uses super() to call Form’s __init__.

3. Finally, we create another subclass that also contains a static method:

27 class Circle(Form):
28 """Circle Class: inherits from Form and has method area"""
29

30 circles = []
31 pi = 3.14159
32

33 def __init__(self, diameter=1, x=0, y=0):
(continues on next page)

13.5. Summary 123

Python basics, Release 24.1.0

(continued from previous page)

34 super().__init__(x, y)
35 self.diameter = diameter
36 self.__class__.circles.append(self)
37

38 def circumference(self):
39 return self.diameter * self.__class__.pi
40

41 @classmethod
42 def circumferences(cls):
43 """Class method to sum all circle circumferences."""
44 csum = 0
45 for c in cls.circles:
46 csum = csum + c.circumference()
47 return csum

Lines 30 and 31
pi and circles are class variables for Circle.

Line 33
In the __init__ method, the instance inserts itself into the circles list.

Lines 38 and 39
circumferences is a class method and takes the class itself (cls) as a parameter.

Line 42
uses the parameter cls to access the class variable circles.

Now you can create some instances of the class Circle and analyse them. Since the __init__ method of Circle has
default parameters, you can create a circle without specifying any parameters:

>>> import form
>>> c1 = form.Circle()
>>> c1.diameter, c1.x, c1.y
(1, 0, 0)

If you specify parameters, they are used to set the values of the instance:

>>> c2 = form.Circle(2, 3, 4)
>>> c2.diameter, c2.x, c2.y
(2, 3, 4)

When you call the move() method, Python does not find a move() method in the Circle class, so it goes up the
inheritance hierarchy and uses the move() method of Form:

>>> c2.move(5, 6)
>>> c2.diameter, c2.x, c2.y
(2, 8, 10)

You can also call the class method circumferences() of the class Circle, either through the class itself or through
an instance:

>>> form.Circle.circumferences()
9.424769999999999
>>> c2.circumferences()
9.424769999999999

124 Chapter 13. Object Orientation

Python basics, Release 24.1.0

13.6 Private variables and methods

A private variable or private method is a variable that is not visible outside the methods of the class in which it is
defined. Private variables and methods are useful for two reasons:

1. they increase security and reliability by selectively denying access to important parts of an object’s implementa-
tion

2. they prevent naming conflicts that can arise from the use of inheritance.

A class can define a private variable and inherit it from a class that defines a private variable with the same name. Private
variables make code easier to read because they explicitly state what is only used internally in a class. Everything else
is the interface of the class.

Most languages that define private variables do so by using the keyword private or similar. The convention in Python
is simpler and also makes it easier to see immediately what is private and what is not. Any method or instance variable
whose name begins with a double underscore (__) but does not end is private; anything else is not.

As an example, consider the following class definition:

>>> class MyClass:
... def __init__(self):
... self.x = 1
... self.__y = 2
... def print_y(self):
... print(self.__y)
...
>>> m = MyClass()
>>> print(m.x)
1
>>> print(m.__y)
Traceback (most recent call last):
File "<stdin>", line 1, in <module>

AttributeError: 'MyClass' object has no attribute '__y'

The print_y method is not private, and since it is in the MyClass class, it can access and output __y:

>>> m.print_y()
2

Note: The mechanism used to ensure privacy falsifies the name of private variables and private methods when the
code is compiled into bytecode. Specifically, this means that _classname is prefixed to the variable name:

>>> dir(m)
['_MyClass__y', '__class__', ...]

So this is only to prevent accidental access.

13.6. Private variables and methods 125

Python basics, Release 24.1.0

13.7 @property decorator

In Python, you can access instance variables directly, without additional getter and setter methods that are often used in
Java and other object-oriented languages. This makes writing Python classes cleaner and easier, but in some situations
using getter and setter methods can also be useful. Let’s say you need a value before setting it in an instance variable,
or you just want to find out the value of an attribute. In both cases, getter and setter methods would do the job, but at
the cost of losing easy access to instance variables in Python.

The answer is to use a property. This combines the ability to pass access to an instance variable via methods such
as getters and setters with simple access to instance variables via dot notation. To create a property, the property
decorator is used with a method that has the name of the property:

23 @property
24 def length(self):
25 return self.__length

Without a setter, however, the property length is read-only:

>>> s1 = form.Square()
>>> s1.length = 2
Traceback (most recent call last):
File "<stdin>", line 1, in <module>

AttributeError: can't set attribute

To change this, you need to add a setter:

27 @length.setter
28 def length(self, new_length):
29 self.__length = new_length

Now you can use the dot notation to both get and set the property length. Note that the name of the method remains
the same, but the decorator changes to the property name, in our case to length.setter:

>>> s1 = form.Square()
>>> s1.length = 2
>>> s1.circumference()
8

A big advantage of Python’s ability to add properties is that you can work with plain old instance variables at the
beginning of development and then seamlessly switch to property variables whenever and wherever you need to, without
changing the client code. The access is still the same, using dot notation.

13.8 Namespaces

If you are in the method of a class, you have direct access

1. to the local namespace with the parameters and variables declared in this method,

2. the global namespace with functions and variables declared at module level, and

3. the built-in namespace with the built-in functions and built-in exceptions.

These three namespaces are searched in this order.

To explain the different namespaces in more detail in our example, we have extended our existing module to make it
clear what can be accessed within a method: form_ns.py.

126 Chapter 13. Object Orientation

https://docs.python.org/3/library/functions.html#property

Python basics, Release 24.1.0

You can get an overview of the methods that are available in a namespace with

65 def namespaces(self):
66 print("Global namespace:", list(globals().keys()))
67 print("Superclass namespace:", dir(Form))
68 print("Class namespace:", dir(Circle))
69 print("Instance namespace:", dir(self))
70 print("Local namespace:", list(locals().keys()))

>>> import form_ns
>>> c1 = form_ns.Circle()
>>> c1.namespaces()
Global namespace: ['__name__', '__doc__', '__package__', '__loader__', '__spec__', '__
→˓file__', '__cached__', '__builtins__', 'Form', 'Square', 'Circle']
Superclass namespace: ['__class__', '__delattr__', '__dict__', '__dir__', '__doc__', '__
→˓eq__', '__format__', '__ge__', '__getattribute__', '__gt__', '__hash__', '__init__', '_
→˓_init_subclass__', '__le__', '__lt__', '__module__', '__ne__', '__new__', '__reduce__',
→˓ '__reduce_ex__', '__repr__', '__setattr__', '__sizeof__', '__str__', '__subclasshook__
→˓', '__weakref__', 'move']
Class namespace: ['__class__', '__delattr__', '__dict__', '__dir__', '__doc__', '__eq__',
→˓ '__format__', '__ge__', '__getattribute__', '__gt__', '__hash__', '__init__', '__init_
→˓subclass__', '__le__', '__lt__', '__module__', '__ne__', '__new__', '__reduce__', '__
→˓reduce_ex__', '__repr__', '__setattr__', '__sizeof__', '__str__', '__subclasshook__',
→˓'__weakref__', 'circles', 'circumference', 'circumferences', 'diameter', 'instance_
→˓variables', 'move', 'namespaces', 'pi']
Instance namespace: ['_Circle__diameter', '__class__', '__delattr__', '__dict__', '__dir_
→˓_', '__doc__', '__eq__', '__format__', '__ge__', '__getattribute__', '__gt__', '__hash_
→˓_', '__init__', '__init_subclass__', '__le__', '__lt__', '__module__', '__ne__', '__
→˓new__', '__reduce__', '__reduce_ex__', '__repr__', '__setattr__', '__sizeof__', '__str_
→˓_', '__subclasshook__', '__weakref__', 'circles', 'circumference', 'circumferences',
→˓'diameter', 'instance_variables', 'move', 'namespaces', 'pi', 'x', 'y']
Local namespace: ['self']

Via the self variable you also have access to

1. the namespace of the instance with

• instance variables

• private instance variables and

• instance variables of the superclass,

2. the namespace of the class with

• methods,

• class variables,

• private methods and

• private class variables and

3. the namespace of the superclass with

• methods of the superclass and

• class variables of the superclass.

These three namespaces are also searched in this order.

13.8. Namespaces 127

Python basics, Release 24.1.0

You can now analyse the namespace of the instance with the method instance_variables, for example:

72 def instance_variables(self):
73 print(
74 "Instance variables self.__diameter, self.x, self.y:",
75 self.__diameter,
76 self.x,
77 self.y,
78)

>>> import form_ns
>>> c1 = form_ns.Circle()
>>> c1.instance_variables()
Instance variables self.__diameter, self.x, self.y: 1 0 0

Note: While you can access the move method of the superclass form with self, private instance variables, private
methods and private class variables of the superclass are not accessible in this way.

If you only want to change instances of a certain class, you can do this with the garbage collector, for example:

>>> import forms
>>> c1 = forms.Circle()
>>> c2 = forms.Circle(2, 3, 4)
>>> s1 = forms.Square(5, 6, 7)
>>> import gc
>>> for obj in gc.get_objects():
... if isinstance(obj, forms.Circle):
... obj.move(3, 0)
...
>>> c1.x, c1.y
(3, 0)
>>> c2.x, c2.y
(6, 4)
>>> s1.x, s1.y
(6, 7)

13.9 Data types as objects

By now you have learned the basic Python data types and know how to create your own data types using Classes. Note
that Python is dynamically typed, which means that the types are determined at runtime, not compile time. This is one
of the reasons why Python is so easy to use. You can simply try the following:

>>> type(3)
<class 'int'>
>>> type('Hello')
<class 'str'>
>>> type(['Hello', 'Pythonistas'])
<class 'list'>

In these examples you can see the built-in type function in Python. It can be applied to any Python object and returns
the type of the object. In this example, the function tells you that 3 is an int (integer), that 'Hello' is a str (string)

128 Chapter 13. Object Orientation

https://docs.python.org/3/library/gc.html#module-gc
https://docs.python.org/3/library/functions.html#type

Python basics, Release 24.1.0

and that ['Hello', 'Pythonistas'] is a list.

Of greater interest, however, may be the fact that Python returns objects in response to calls to type; <<class 'int'>,
<<class 'str'> and <<class 'list'> are the screen representations of the returned objects. So you can compare
these Python objects with each other:

>>> type('Hello') == type('Pythonistas!')
True
>>> type('Hello') == type('Pythonistas!') == type(['Hello', 'Pythonistas'])
False

With this technique you can, among other things, perform a type check in your function and method definitions. How-
ever, the most common question about the types of objects is whether a particular object is an instance of a class. An
example with a simple inheritance hierarchy makes this clearer:

1. First, we define two classes with an inheritance hierarchy:

>>> class Form:
... pass
...
>>> class Square(Form):
... pass
...
>>> class Circle(Form):
... pass

2. Now you can create an instance c1 of the class Circle:

>>> c1 = Circle()

3. As expected, the type function on c1 outputs that c1 is an instance of the class Circle defined in your current
__main__ namespace:

>>> type(c1)
<class '__main__.Circle'>

4. You can also get exactly the same information by accessing the __class__ attribute of the instance:

>>> c1.__class__
<class '__main__.Circle'>

5. You can also explicitly check whether the two class objects are identical:

>>> c1.__class__ == Circle
True

6. However, two built-in functions provide a more user-friendly way of obtaining most of the information normally
required:

isinstance()
determines whether, for example, a class passed to a function or method is of the expected type.

issubclass()

determines whether one class is the subclass of another.

13.9. Data types as objects 129

https://docs.python.org/3/library/functions.html#type
https://docs.python.org/3/library/functions.html#isinstance
https://docs.python.org/3/library/functions.html#issubclass

Python basics, Release 24.1.0

>>> issubclass(Circle, Form)
True
>>> issubclass(Square, Form)
True
>>> isinstance(c1, Form)
True
>>> isinstance(c1, Square)
False
>>> isinstance(c1, Circle)
True
>>> issubclass(c1.__class__, Form)
True
>>> issubclass(c1.__class__, Square)
False
>>> issubclass(c1.__class__, Circle)
True

13.9.1 Duck typing

The use of type, isinstance() and issubclass() makes it fairly easy to correctly determine the inheritance hi-
erarchy of an object or class. However, Python also has a feature that makes using objects even easier: duck typing –
„If it walks like a duck and it quacks like a duck, then it must be a duck“. This refers to Python’s way of determining
whether an object is the required type for an operation, focusing on the interface of an object. In short, in Python you
don’t have to worry about type-checking function or method arguments and the like, but instead rely on readable and
documented code in conjunction with tests to ensure that an object „quacks like a duck when needed.“

Duck typing can increase the flexibility of well-written code and, in combination with advanced object-oriented func-
tions, gives you the ability to create classes and objects that cover almost any situation. Such special methods are
attributes of a class with special meaning for Python. While they are defined as methods, they are not intended to be
called directly; instead, they are called automatically by Python in response to a request to an object of that class.

One of the simplest examples of a special method is object.__str__(). When defined in a class, the __str__method
attribute is called whenever an instance of that class is used and Python requires a user-readable string representation
of that instance. To see this attribute in action, we again use our Form class with the standard __init__ method to
initialise instances of the class, but also a __str__method to return strings representing instances in a readable format:

>>> class Form:
... def __init__(self, x, y):
... self.x = x
... self.y = y
... def __str__(self):
... return "Position: x={0}, y={1}".format (self.x, self.y)
...
>>> f = Form(2,3)
>>> print(f)
Position: x=2, y=3

Even though our special __str__ method attribute was not explicitly called by our code, it could still be used by
Python because Python knows that the __str__ attribute, if present, defines a method for converting objects into user-
readable strings. And this is exactly what distinguishes the special method attributes. For example, it is often a good
idea to define the __str__ attribute for a class so that you can call print(instance) in debugging code and get an
informative statement about your object.

130 Chapter 13. Object Orientation

https://docs.python.org/3/library/functions.html#type
https://docs.python.org/3/library/functions.html#isinstance
https://docs.python.org/3/library/functions.html#issubclass
https://docs.python.org/3/reference/datamodel.html#specialnames
https://docs.python.org/3/reference/datamodel.html#object.__str__

Python basics, Release 24.1.0

Conversely, however, it may be surprising that an object type reacts differently to special method attributes. Therefore,
I usually use special method attributes only in one of the following two cases:

• in a commonly used class, usually for sequences, that behaves similarly to a Python built-in type, and which is
made more useful by special method attributes.

• in a class that behaves almost identically to a built-in class, for example lists implemented as balanced trees to
speed up insertion, I can define the special method attributes.

13.9. Data types as objects 131

Python basics, Release 24.1.0

132 Chapter 13. Object Orientation

CHAPTER

FOURTEEN

SAVE AND ACCESS DATA

To store data persistently, a process called serialisation or marshalling can be used. In it, data structures are converted
into a linear form and stored. The reverse process is then called deserialisation or unmarshalling. Python offers several
modules in the standard library that you can be used to serialise and deserialise objects:

the marshal module
is mainly used internally by Python and should not be used to store data in a backwards compatible way.

the pickle module
if you don’t need a readable format or interoperability.

the json module
you can use to exchange data for different languages in a readable form.

the xml module
you can also use to exchange data in different languages in a readable form.

14.1 The Python Database API

The Python Database API (Application Programming Interface) defines a standard interface for Python database access
modules. It’s defined in PEP 249 and widely used, for example by sqlite, psycopg, and mysql-python.

14.2 SQLAlchemy

SQLAlchemy is a widely used database toolkit. It provides not only an ORM (Object Relational Mapper) but also a
generalised API for writing database-agnostic code without SQL. Alembic is based on SQLAlchemy and serves as a
database migration tool.

14.3 NoSQL databases

There is data that is difficult to transfer into a relational data model. At the least then you should take a look at NoSQL
databases.

133

https://docs.python.org/3/library/marshal.html
https://docs.python.org/3/library/json.html
https://peps.python.org/pep-0249/
https://sourceforge.net/projects/mysql-python/
https://www.python4data.science/en/latest/data-processing/postgresql/sqlalchemy.html
https://www.python4data.science/en/latest/data-processing/postgresql/alembic.html
https://www.python4data.science/en/latest/data-processing/nosql/index.html
https://www.python4data.science/en/latest/data-processing/nosql/index.html

Python basics, Release 24.1.0

14.3.1 File system

To work with files, you often have to interact with the file system and the different conventions depending on the
operating system. For this I show you os and especially os.path.

Paths and path names

All operating systems refer to files with strings called pathnames. Python provides a number of functions to help you
solve some problems. The semantics of pathnames are very similar on all operating systems because the file system is
usually modelled as a tree structure, with a hard disk representing the root and folders, subfolders, etc. representing
the branches and subbranches; this means that most operating systems refer to a particular file in a very similar way.

However, different operating systems have different conventions for path names. The character used to separate consec-
utive file or directory names in a Linux/macOS pathname is /, while in a Windows pathname it is \. Also, the Linux file
system has a single root directory referred to by a / character as the first character in the path name, while the Windows
file system has a separate root directory for each drive, referred to as {C:}, and so on. Because of these differences,
files have different path names on different operating systems. A file named C:\DATA\MYFILE on Windows could be
/DATA/MYFILE on Linux and macOS. Python provides functions and constants that allow you to perform common
pathname manipulations without having to worry about such syntactical details. With a little care, you can write your
Python programs to run correctly regardless of the underlying file system.

Absolute and relative paths

These operating systems allow two types of path names:

Absolute path names
uniquely indicate the exact position of a file in the file system by listing the entire path to that file, starting with
the root directory of the file system.

Two absolute Windows path names are given here as examples:

C:\Program Files\Python 3.9\
D:\backup\2022\06\

And here are two absolute Linux path names and one absolute macOS path name:

/bin/python3
/cdrom/backup/2022/06/
/Applications/Python\ 3.10/

Relative pathnames
indicate the position of a file relative to another point in the file system, and this other point is not indicated in
the relative path name itself.

As example, a Windows relative pathname is given here:

save-data\filesystem.rst

. . . and here a relative Linux/macOS pathname:

save-data/filesystem.rst

Relative paths therefore require a context in which they are anchored. This context is usually provided in one of
two ways:

134 Chapter 14. Save and access data

https://docs.python.org/3/library/os.html
https://docs.python.org/3/library/os.path.html

Python basics, Release 24.1.0

• The relative path is appended to an existing absolute path, creating a new absolute path. If you have a
Windows relative path Start Menu\Programs\Python 3.8 and an absolute path C:\Users\Veit, then
by appending the relative path a new absolute path: C:\Users\Veit\Start Menu\Programs\Python
3.8 can be created. If you append the same relative path to another absolute path (for example to C:\
Users\Tim, you will get a new path referring to another HOME directory (Tim).

• Relative paths can also be given a context by implicitly referring to the current working directory, that is
the directory in which a Python programme is located at the time it is executed. Python commands can
implicitly refer back to the current working directory if a relative path is passed to them as an argument.
For example, if you use the os.listdir('RELATIVE/PATH') command with a relative path argument,
the anchor for that relative path is the current working directory, and the result of the command is a list
of the filenames in the directory whose path is formed by appending the current working directory to the
relative path argument.

The directory in which a Python file is located is called the current working directory. This directory will
usually be different from the directory where the Python interpreter is located. To illustrate this, let’s start
Python and use the command os.getcwd() to find out the current working directory of Python:

>>> import os
>>> os.getcwd()
'/home/veit'

Note: os.getcwd() is used as a function call without arguments to make it clear that the returned value
is not a constant, but changes when you change the value of the current working directory. In the example
above, the result is the home directory on one of my Linux machines. On Windows machines, additional
backslashes would be added to the path: C:\\Users\\Veit, because Windows uses the backslash \ as a
path separator, but it has a different meaning in strings.

To display the contents of the current directory, you can enter the following:

>>> os.listdir(os.curdir)
['.gnupg', '.bashrc', '.local', '.bash_history', '.ssh', '.bash_logout', '.
→˓profile', '.idlerc', '.viminfo', '.config', 'Downloads', 'Documents', '.
→˓python_history']

However, you can also change to another directory and then have the current working directory displayed:

>>> os.chdir('Downloads')
>>> os.getcwd()
'/home/veit/Downloads'

Change path names

Python provides some ways to change pathnames with the os.path submodule without having to explicitly use an oper-
ating system-specific syntax.

os.path.join()
constructs path names for different operating systems, for example under Windows:

>>> import os
>>> print(os.path.join('save-data', 'filesystem.rst'))
save-data\filesystem.rst

14.3. NoSQL databases 135

https://docs.python.org/3/library/os.html#os.getcwd
https://docs.python.org/3/library/os.path.html
https://docs.python.org/3/library/os.path.html#os.path.join

Python basics, Release 24.1.0

Here, the arguments are interpreted as a series of directory or file names to be joined into a single string that is
understood by the underlying operating system as a relative path. Under Windows, this means that the names of
the path components are connected with backslashes (\).

If you do the same under Linux/macOS, on the other hand, you will get / as the separator:

>>> import os
>>> print(os.path.join('save-data', 'filesystem.rst'))
save-data/filesystem.rst

You can therefore use this method to create file paths independently of the operating system on which your
programme is running.

The arguments do not necessarily have to be individual directory or file names either; they can also be sub-paths
that are then joined together to form a longer path name. The following example illustrates this under Windows,
where either slashes (/) or double backslashes (\\) can be used in the strings:

>>> import os
>>> print(os.path.join('python-basics-tutorial-de\\docs', 'save-data\\filesystem.rst
→˓'))
python-basics-tutorial-de\docs\save-data\filesystem.rst

os.path.split()
returns a tuple with two elements that separates the base name of a path from the rest of the path, for example
under macOS:

>>> import os
>>> print(os.path.split(os.getcwd()))
('/home/veit/python-basics-tutorial-de', 'docs')

os.path.basename()
returns only the base name of the path:

>>> import os
>>> print(os.path.basename(os.getcwd()))
docs

os.path.dirname()
returns the path up to the base name:

>>> import os
>>> print(os.path.dirname(os.getcwd()))
/home/veit/python-basics-tutorial-de

os.path.splitext()
outputs the dotted extension notation used by most file systems to indicate the file type:

>>> import os
>>> print(os.path.splitext('filesystem.rst'))
('filesystem', '.rst')

The last element of the returned tuple contains the dotted extension of the specified file.

os.path.commonpath()
is a more specialised function to manipulate path names. It finds the common path for a group of paths and is
thus good for finding the lowest level directory that contains each file in a group of files:

136 Chapter 14. Save and access data

https://docs.python.org/3/library/os.path.html#os.path.split
https://docs.python.org/3/library/os.path.html#os.path.basename
https://docs.python.org/3/library/os.path.html#os.path.dirname
https://docs.python.org/3/library/os.path.html#os.path.splitext
https://docs.python.org/3/library/os.path.html#os.path.commonpath

Python basics, Release 24.1.0

>>> import os
>>> print(os.path.commonpath(['save-data/filesystem.rst', 'save-data/index.rst']))
save-data

os.path.expandvars()
expands environment variables in paths:

>>> os.path.expandvars('$HOME/python-basics-tutorial')
'/home/veit/python-basics-tutorial'

Useful constants and functions

os.name
returns the name of the Python module that was imported to handle the operating system specific details, for
example:

>>> import os
>>> os.name
'nt'

Note: Most versions of Windows, with the exception of Windows CE, are identified as nt.

On macOS and Linux, the answer is posix. Depending on the platform, you can perform special operations
with this answer:

>>> import os
>>> if os.name == 'posix':
... root_dir = '/'
... elif os.name == 'nt':
... root_dir = 'C:\\'
... else:
... print('The operating system was not recognised!')

Getting information about files

File paths show files and directories on your hard disk. To find out more about them, there are several Python functions,
including

os.path.exists()
returns True if its argument is a path that matches a path that exists in the filesystem.

os.path.isfile()
returns True if and only if the given path points to a file, and returns False otherwise, including the possibility
that the path argument points to nothing in the filesystem.

os.path.isdir()
returns True if and only if its path argument points to a directory; otherwise it returns False.

Other similar functions provide more specific queries:

14.3. NoSQL databases 137

https://docs.python.org/3/library/os.path.html#os.path.expandvars
https://docs.python.org/3/library/os.html#os.name
https://docs.python.org/3/library/os.path.html#os.path.exists
https://docs.python.org/3/library/os.path.html#os.path.isfile
https://docs.python.org/3/library/os.path.html#os.path.isdir

Python basics, Release 24.1.0

os.path.islink()
returns True if a path specifies a file that is a link. However, Windows link files with the extension .lnk are not
real links in this sense and return False. Links created only with mklink() also return True.

os.path.ismount()
returns True on possix filesystems if the path is a mount point.

os.path.samefile()
returns True if the two path arguments point to the same file.

os.path.isabs()
returns True if its argument is an absolute path; otherwise returns False.

os.path.getsize()
returns the size of the file or directory.

os.path.getmtime()
specifies the modification date of the file or directory.

os.path.getatime()
gives the last access time for a file or directory.

Other file system operations

Python has other very useful commands in the os module: Below I describe only some cross-operating system opera-
tions, but more specific file system functions are also provided.

os.rename()
names or moves a file or directory, for example

>>> os.rename('filesystem.rst', 'save-data/filesystem.rst')

os.remove()
deletes files, for example

>>> os.remove('filesystem.rst')

os.rmdir()
deletes an empty directory. To remove non-empty directories, use shutil.rmtree(); this function recursively
removes all files in a directory tree.

os.makedirs()
creates a directory with all necessary intermediate directories, for example

>>> os.makedirs('save-data/filesystem')

Processing all files in a directory

A useful function for recursively walking through directory structures is os.walk(). You can use it to walk an entire
directory tree and, for each directory, return the path of that directory, a list of its subdirectories and a list of its files.
It can have three optional arguments: os.walk(directory, topdown=True, onerror=None, followlinks=
False).

directory
is the path of the starting directory

138 Chapter 14. Save and access data

https://docs.python.org/3/library/os.path.html#os.path.islink
https://docs.python.org/3/library/os.path.html#os.path.ismount
https://docs.python.org/3/library/os.path.html#os.path.samefile
https://docs.python.org/3/library/os.path.html#os.path.isabs
https://docs.python.org/3/library/os.path.html#os.path.getsize
https://docs.python.org/3/library/os.path.html#os.path.getmtime
https://docs.python.org/3/library/os.path.html#os.path.getatime
https://docs.python.org/3/library/os.html#module-os
https://docs.python.org/3/library/os.html#os.rename
https://docs.python.org/3/library/os.html#os.remove
https://docs.python.org/3/library/os.html#os.rmdir
https://docs.python.org/3/library/shutil.html#shutil.rmtree
https://docs.python.org/3/library/os.html#os.makedirs
https://docs.python.org/3/library/os.html#os.walk

Python basics, Release 24.1.0

topdown
on True or not present, processes the files in each directory before the subdirectories, resulting in a listing that
starts at the top and goes down;

on False, the subdirectories of each directory are processed first, resulting in a traversal of the tree from bottom
to top.

onerror
can be set to a function to handle errors resulting from calls to os.listdir(), which are ignored by default.
Usually symbolic links are not followed unless you specify the parameter follow-links=True.

1 >>> import os
2 >>> for root, dirs, files in os.walk(os.curdir):
3 ... print("{0} has {1} files".format(root, len(files)))
4 ... if ".ipynb_checkpoints" in dirs:
5 ... dirs.remove(".ipynb_checkpoints")
6 ...
7 . has 13 files
8 ./control-flows has 13 files
9 ./save-data has 30 files

10 ./test has 15 files
11 ./test/coverage has 3 files
12 ...

Line 4
checks for a directory called .ipynb_checkpoints.

Line 5
removes .ipynb_checkpoints from the directory list.

shutil.copytree() recursively makes copies of all files in a directory and all its subdirectories, preserving infor-
mation about access and modification times. shutil also has the already mentioned shutil.rmtree() function for
removing a directory and all its subdirectories, and several functions for making copies of individual files.

14.3.2 The pickle module

Python can write any data structure to a file, read that data structure back out of the file, and recreate it with just a few
commands. This capability can be very useful because it can save you many pages of code that does nothing but write
the state of a programme to a file and read that state back in.

Python provides this capability via the pickle module. Pickle is powerful, but simple to use. Suppose that the entire
state of a programme is stored in three variables: a, b and c. You can store this state in a file called data.pickle as
follows:

1. Importing the pickle module

>>> import pickle

2. Define different data

>>> a = [1, 2.0, 3+4j]
>>> b = ("character string", b"byte string")
>>> c = {None, True, False}

3. Writing the data

14.3. NoSQL databases 139

https://docs.python.org/3/library/os.html#os.listdir
https://docs.python.org/3/library/shutil.html#shutil.copytree
https://docs.python.org/3/library/shutil.html#module-shutil
https://docs.python.org/3/library/shutil.html#shutil.rmtree
https://docs.python.org/3/library/pickle.html

Python basics, Release 24.1.0

>>> with open('data.pickle', 'wb') as f:
... pickle.dump(a, f)
... pickle.dump(b, f)
... pickle.dump(c, f)

It does not matter what was stored in the variables. The content can be as simple as numbers or as complex as a
list of dictionaries containing instances of user-defined classes. pickle.dump() saves everything.

The pickle module can store almost anything in this way. It can handle Numbers, Lists, Tuples, Dictionaries,
Strings and pretty much anything made up of these object types, including all class instances. It also handles
shared objects, cyclic references and other complex storage structures correctly by storing shared objects only
once and restoring them as shared objects, not as identical copies.

4. Loading pickled data:

This data can be read in again during a later programme run with pickle.load():

>>> with open('data.pickle', 'rb') as f:
... first = pickle.load(f)
... second = pickle.load(f)
... third = pickle.load(f)

5. Output the pickled data:

>>> print(first, second, third)
[1, 2.0, (3+4j)] ('character string', b'byte string') {False, None, True}

However, in most cases you will not want to restore all your data in the order it was saved. A simple and effective way
to restore only the data of interest is to write a save function that stores all the data you want to save in a dictionary and
then use Pickle to save the dictionary. You can then use a complementary restore function to read the dictionary back
in and assign the values in the dictionary to the appropriate programme variables. If you use this approach with the
previous example, you will get the following code:

>>> def save():
... # Serialise Python objects
... data = {'a': a, 'b': b, 'c': c}
... # File with pickles
... with open('data.pickle', 'wb') as f:
... pickle.dump(data, f)

You can then output the data from c with

>>> with open('data.pickle', 'rb') as f:
... saved_data = pickle.load(f)
... print(saved_data['c'])
...
{False, None, True}

In addition to pickle.dump() and pickle.load(), there are also the functions pickle.dumps() and pickle.
loads(). The appended s indicates that these functions process strings.

Warning: Although using a pickled object in the previous scenario can make sense, you should also be aware of
the disadvantages of pickling:

140 Chapter 14. Save and access data

https://docs.python.org/3/library/pickle.html#pickle.dump
https://docs.python.org/3/library/pickle.html#pickle.load
https://docs.python.org/3/library/pickle.html#pickle.dump
https://docs.python.org/3/library/pickle.html#pickle.load
https://docs.python.org/3/library/pickle.html#pickle.dumps
https://docs.python.org/3/library/pickle.html#pickle.loads
https://docs.python.org/3/library/pickle.html#pickle.loads

Python basics, Release 24.1.0

• Pickling is neither particularly fast nor space-saving as a means of serialisation. Even using json to store
serialised objects is faster and results in smaller files on disk.

• Pickling is not secure, and loading a pickle with malicious content can lead to the execution of arbitrary code
on your machine. Therefore, you should avoid pickling if there is a possibility that the pickle file is accessible
to someone who could modify it.

• Pickle versions are not always backwards compatible.

See also:
• Python-Module-Dokumentation

• Using Pickle

14.3.3 The xml module

The XML module comes with Python. In the following section we will focus on the two sub-modules minidom and
ElementTree.

Working with minidom

In the following example we analyse books.xml:

1 <?xml version="1.0"?>
2 <catalog>
3 <book id="1">
4 <title>Python basics</title>
5 <language>en</language>
6 <author>Veit Schiele</author>
7 <license>BSD-3-Clause</license>
8 <date>2021-10-28</date>
9 </book>

10 <book id="2">
11 <title>Jupyter Tutorial</title>
12 <language>en</language>
13 <author>Veit Schiele</author>
14 <license>BSD-3-Clause</license>
15 <date>2019-06-27</date>
16 </book>
17 <book id="3">
18 <title>Jupyter Tutorial</title>
19 <language>de</language>
20 <author>Veit Schiele</author>
21 <license>BSD-3-Clause</license>
22 <date>2020-10-26</date>
23 </book>
24 <book id="4">
25 <title>PyViz Tutorial</title>
26 <language>en</language>
27 <author>Veit Schiele</author>
28 <license>BSD-3-Clause</license>

(continues on next page)

14.3. NoSQL databases 141

https://docs.python.org/3/library/json.html
https://docs.python.org/3/library/pickle.html
https://wiki.python.org/moin/UsingPickle
https://docs.python.org/3/library/xml.html
https://docs.python.org/3/library/xml.dom.minidom.html
https://docs.python.org/3/library/xml.etree.elementtree.html

Python basics, Release 24.1.0

(continued from previous page)

29 <date>2020-04-13</date>
30 </book>
31 </catalog>

1. To do this, we first import the minidom module and give it the same name so that it can be referenced more
easily:

1 import xml.dom.minidom as minidom

2. Then we define the method getTitles and capture the desired XML tags with the method
getElementsByTagName:

4 def getTitles(xml):
5 """
6 Print all titles found in books.xml
7 """
8 doc = minidom.parse(xml)
9 node = doc.documentElement

10 books = doc.getElementsByTagName("book")

3. Then we create an empty list called titles, which is filled with the title objects:

12 titles = []
13 for book in books:
14 titleObj = book.getElementsByTagName("title")[0]
15 titles.append(titleObj)

4. Now the title is output in nested for-loops:

17 for title in titles:
18 nodes = title.childNodes
19 for node in nodes:
20 if node.nodeType == node.TEXT_NODE:
21 print(node.data)

5. Finally, we set the __name__ variable like __main__ so that the module can be executed like the main program.
Then we apply our getTitles method to our books.xml file:

24 if __name__ == "__main__":
25 document = "books.xml"
26 getTitles(document)

Parsing with ElementTree

1. Importing cElementTree:

1 import xml.etree.cElementTree as ET

Note: cElementTree written in C and is considerably faster than ElementTree.

2. Then we define the method parseXML and the root element:

142 Chapter 14. Save and access data

Python basics, Release 24.1.0

4 def parseXML(xml_file):
5 """
6 Parse XML with ElementTree
7 """
8 tree = ET.ElementTree(file=xml_file)
9 print(tree.getroot())

10 root = tree.getroot()
11 print(f"tag={root.tag}, attrib={root.attrib}")

<Element 'catalog' at 0x10b009620>
tag=catalog, attrib={}

3. Output the XML child elements of book:

13 for child in root:
14 print(child.tag, child.attrib)
15 if child.tag == "book":
16 for step_child in child:
17 print(step_child.tag)

book {'id': '1'}
title
language
author
license
date
book {'id': '2'}
...

4. Output the contents of the child elements with iter:

20 print("-" * 20)
21 print("Iterating using iter")
22 print("-" * 20)
23 books = root.iter()
24 for book in books:
25 book_children = book.iter()
26 for book_child in book_children:
27 print(f"{book_child.tag}={book_child.text}")

Iterating using iter

catalog=
book=
title=Python basics
language=en
author=Veit Schiele
license=BSD-3-Clause
date=2021-10-28
book=
title=Jupyter Tutorial
...

14.3. NoSQL databases 143

Python basics, Release 24.1.0

14.3.4 The sqlite module

The most important features of SQLite are:

• self-contained

• serverless

• config free

• transactional

SQLite is used to save data locally, e.g. in mobile phones (Android, iOS) and in browsers (Firefox, Safari, Chrome),
and many other applications.

See also:
• sqlite home

• sqlite3 — DB-API 2.0 interface for SQLite databases

• W3Schools SQL tutorial

14.3.5 Create a database

1. Import the sqlite module

1 import sqlite3

2. Create a database

4 conn = sqlite3.connect("library.db")
5

6 cursor = conn.cursor()

3. Create a table

9 cursor.execute(
10 """CREATE TABLE books
11 (title text, language text, author text, license text,
12 release_date text)
13 """
14)

14.3.6 Create data

1. Insert a record into the database:

7 cursor.execute(
8 """INSERT INTO books
9 VALUES ('Python basics', 'en', 'Veit Schiele', 'BSD',

10 '2021-10-28')"""

2. Save data to database:

14 conn.commit()

144 Chapter 14. Save and access data

https://www.sqlite.org/index.html
https://www.sqlite.org/
https://docs.python.org/3/library/sqlite3.html
https://www.w3schools.com/sql/

Python basics, Release 24.1.0

3. Insert multiple records using the more secure ? method where the number of ? should correspond to the number
of columns:

17 new_books = [
18 ("Jupyter Tutorial", "en", "Veit Schiele", "BSD-3-Clause", "2019-06-27"),
19 ("Jupyter Tutorial", "de", "Veit Schiele", "BSD-3-Clause", "2020-10-26"),
20 ("PyViz Tutorial", "en", "Veit Schiele", "BSD-3-Clause", "2020-04-13"),
21]
22 cursor.executemany("INSERT INTO books VALUES (?,?,?,?,?)", new_books)
23 conn.commit()

14.3.7 Create data from csv

1. Import the sqlite and csv modules

1 import csv
2 import sqlite3

2. Point to the Library Database

4 conn = sqlite3.connect("library.db")
5 cursor = conn.cursor()

3. Read the csv file and insert the records into the database:

8 with open("books.csv", encoding="utf-8") as f:
9 reader = csv.reader(f, delimiter=",")

10 cursor.executemany("INSERT INTO books VALUES (?,?,?,?,?)", reader)

4. Save data to database:

14 conn.commit()

14.3.8 Query data

1. Select all records from an author:

7 def select_all_records_from_author(cursor, author):
8 print(f"All books from {author}:")
9 sql = "SELECT * FROM books WHERE author=?"

10 cursor.execute(sql, [author])
11 print(cursor.fetchall()) # or use fetchone()

For the print output, we use a formatted string literal or f-string by prefixing it with an f.

2. Select all records sorted by author:

14 def select_all_records_sorted_by_author(cursor):
15 print("Listing of all books sorted by author:")
16 for row in cursor.execute("SELECT rowid, * FROM books ORDER BY author"):
17 print(row)

3. Select titles containing Python:

14.3. NoSQL databases 145

https://docs.python.org/3/glossary.html#term-f-string

Python basics, Release 24.1.0

20 def select_using_like(cursor, text):
21 print(f"All books with {text} in the title:")
22 sql = f"""
23 SELECT * FROM books
24 WHERE title LIKE '{text}%'"""
25 cursor.execute(sql)
26 print(cursor.fetchall())

4. Finally, the data can be queried with:

29 select_all_records_from_author(cursor, author="Veit Schiele")
30 select_all_records_sorted_by_author(cursor)
31 select_using_like(cursor, text="Python")

All books from Veit Schiele:
[(1, 'Python basics', 'en', 'Veit Schiele', 'BSD-3-Clause', '2021-10-28'), (2,
→˓'Jupyter Tutorial', 'en', 'Veit Schiele', 'BSD-3-Clause', '2019-06-27'), (3,
→˓'Jupyter Tutorial', 'de', 'Veit Schiele', 'BSD-3-Clause', '2020-10-26'), (4,
→˓'PyViz Tutorial', 'en', 'Veit Schiele', 'BSD-3-Clause', '2020-04-13')]
Listing of all books sorted by author:
(1, 'Python basics', 'en', 'Veit Schiele', 'BSD-3-Clause', '2021-10-28')
(2, 'Jupyter Tutorial', 'en', 'Veit Schiele', 'BSD-3-Clause', '2019-06-27')
(3, 'Jupyter Tutorial', 'de', 'Veit Schiele', 'BSD-3-Clause', '2020-10-26')
(4, 'PyViz Tutorial', 'en', 'Veit Schiele', 'BSD-3-Clause', '2020-04-13')
All books with Python in the title:
[(1, 'Python basics', 'en', 'Veit Schiele', 'BSD-3-Clause', '2021-10-28')]

14.3.9 Update data

1. Change a license

4 def update_license(old_name, new_name):
5 conn = sqlite3.connect("library.db")
6 cursor = conn.cursor()
7 sql = f"""
8 UPDATE books
9 SET license = '{new_name}'

10 WHERE license = '{old_name}'
11 """
12 cursor.execute(sql)
13 conn.commit()

2. Calling the method:

16 update_license(old_name="BSD", new_name="BSD-3-Clause")

146 Chapter 14. Save and access data

Python basics, Release 24.1.0

14.3.10 Delete data

1. Delete all books in a specific language:

4 def delete_by_language(language):
5 conn = sqlite3.connect("library.db")
6 cursor = conn.cursor()
7

8 sql = f"""
9 DELETE FROM books

10 WHERE language = '{language}'
11 """
12 cursor.execute(sql)
13 conn.commit()

2. Call the method with the parameter of the language to be deleted:

16 delete_by_language(language="de")

14.3.11 Normalising the data

Normalisation is the division of attributes or table columns into several relations or tables so that no redundancies are
included.

Example

In the following example, we normalise the language in which the books were published.

1. To do this, we first create a new table languages with the columns id and language_code:

6 cursor.execute(
7 """CREATE TABLE languages
8 (id INTEGER PRIMARY KEY AUTOINCREMENT,
9 language_code VARCHAR(2))"""

2. Then we create the values de and en in this table:

12 cursor.execute(
13 """INSERT INTO languages (language_code)
14 VALUES ('de')"""
15)
16

17 cursor.execute(
18 """INSERT INTO languages (language_code)

3. Since SQLite does not support MODIFY COLUMN, we now create a temporary table temp with all columns from
books and a column language_code that uses the column id from the languages table as a foreign key:

22 cursor.execute(
23 """CREATE TABLE "temp" (
24 "id" INTEGER,
25 "title" TEXT,
26 "language_code" INTEGER REFERENCES languages(id),

(continues on next page)

14.3. NoSQL databases 147

https://en.wikipedia.org/wiki/Database_normalization

Python basics, Release 24.1.0

(continued from previous page)

27 "language" TEXT,
28 "author" TEXT,
29 "license" TEXT,
30 "release_date" DATE,
31 PRIMARY KEY("id" AUTOINCREMENT)
32)"""

4. Now we transfer the values from the books table to the temp table:

35 cursor.execute(
36 """INSERT INTO temp (title,language,author,license,release_date)
37 SELECT title,language,author,license,release_date FROM books"""

5. Transfer the specification of the language in books as the id of the data records from the languages table to
temp.

40 cursor.execute(
41 """UPDATE temp
42 SET language_code = 1
43 WHERE language = 'de'"""
44)

6. Now we can delete the languages column in the temp table:

55 cursor.execute("""ALTER TABLE temp DROP COLUMN language""")

Note: DROP COLUMN can only be used from Python versions from 3.8 that were released after 27 April 2021.

With older Python versions, another table would have to be created that no longer contains the languages column
and then the data records from temp would have to be inserted into this table.

7. The books table can now also be deleted:

57 cursor.execute("""DROP TABLE books""")

8. And finally, the temp table can be renamed books:

59 cursor.execute("""ALTER TABLE temp RENAME TO books""")

14.3.12 Query normalised data

1. Query all books sorted by language_id and title:

7 def select_all_records_ordered_by_language_number(cursor):
8 print("All books ordered by language id and title:")
9 for row in cursor.execute(

10 """SELECT language_code, author, title FROM books
11 ORDER BY language_code,title"""
12):
13 print(row)

148 Chapter 14. Save and access data

Python basics, Release 24.1.0

All books ordered by language id and title:
(1, 'Veit Schiele', 'Jupyter Tutorial')
(2, 'Veit Schiele', 'Jupyter Tutorial')
(2, 'Veit Schiele', 'PyViz Tutorial')
(2, 'Veit Schiele', 'Python basics')

2. In order to receive not only the ID of the languages but also the corresponding language codes, a connection to
the language codes stored there is established with JOIN via the id column in the languages table:

16 def select_all_records_ordered_by_language_code(cursor):
17 print("All books ordered by language code and title:")
18 for row in cursor.execute(
19 """SELECT languages.language_code, books.author, books.title
20 FROM books
21 JOIN languages ON (books.language_code = languages.

→˓id)
22 ORDER BY languages.language_code,title"""
23):
24 print(row)

All books ordered by language code and title:
('de', 'Veit Schiele', 'Jupyter Tutorial')
('en', 'Veit Schiele', 'Jupyter Tutorial')
('en', 'Veit Schiele', 'PyViz Tutorial')
('en', 'Veit Schiele', 'Python basics')

14.3.13 The psycopg module

1. Install the psycopg module

$ python3 -m pip install psycopg
Collecting psycopg
Downloading psycopg-3.0.1-py3-none-any.whl (140 kB)

|| 140 kB 3.4 MB/s
Installing collected packages: psycopg
Successfully installed psycopg-3.0.1

2. Import the psycopg module

1 import psycopg2

3. Create a database

3 conn = psycopg2.connect(dbname="my_db", user="username")
4 cursor = conn.cursor()

4. Query the database

7 cursor.execute("SELECT * FROM my_table")
8 row = cursor.fetchone()

5. Close cursor and connection

14.3. NoSQL databases 149

Python basics, Release 24.1.0

11 cursor.close()
12 conn.close()

150 Chapter 14. Save and access data

CHAPTER

FIFTEEN

DATACLASSES

dataclasses were introduced in Python 3.7 and are a special shortcut with which we can create classes that store data.
Python offers a special decorator if we want to create such a class.

Note: For table data I generally use pandas Series or DataFrames and if I need to store matrices with numbers I use
Numpy.

Let’s say we want to store a class that represents an item with summary, owner, state and id. We can define such a
class with:

>>> from dataclasses import dataclass
>>> @dataclass
... class Item:
... summary: str = None
... owner: str = None
... state: str = "todo"
... id: int = None

The @dataclass decorator creates the __init__ and __repr__ methods. If I display the instance of the class, I get
the class name and the attributes:

>>> i1
Item(summary='My first item', owner='veit', state='todo', id=1)

In general, data classes are used as syntactic sugar for creating classes that store data. You can add extra functionality
to your classes by defining methods. We will add a method to the class that creates an Item object from a Dict:

>>> @dataclass
... class Item:
...
... @classmethod
... def from_dict(cls, d):
... return Item(**d)
...
>>> item_dict = {"summary": "My first item", "owner": "veit", "state": "todo", "id": 1}
>>> Item.from_dict(item_dict)
Item(summary='My first item', owner='veit', state='todo', id=1)

151

https://docs.python.org/3/library/dataclasses.html
https://www.python4data.science/en/latest/workspace/pandas/data-structures.html
https://www.python4data.science/en/latest/workspace/numpy/index.html

Python basics, Release 24.1.0

152 Chapter 15. dataclasses

CHAPTER

SIXTEEN

TESTING

Basically, a distinction is made between static and dynamic test procedures.

Static test procedures
are used to check the source code, but it’s not executed. They are divided into

• reviews and

• static program analysis

There are several Python packages that can help you with static program analysis, including flake8, Pysa
and Wily.

Dynamic testing
are used to find errors when executing the source code. A distinction is made between whitebox and backbox
tests.

Whitebox tests
are developed with knowledge of the source code and the software structure. In Python, various modules
are available:

Unittest
supports you in automating tests.

Mock
allows you to create and use mock objects.

Doctest
allows you to test tests written in Python docstrings.

tox
allows you to test in different environments.

Blackbox tests
are developed without knowledge of the source code. In addition to Unittest, Hypothesis can also be used
in Python for such tests.

See also:
• Python Testing and Continuous Integration

153

https://www.python4data.science/en/latest/productive/security.html#code-reviews
https://en.wikipedia.org/wiki/Static_program_analysis
https://www.python4data.science/en/latest/productive/qa/flake8.html
https://www.python4data.science/en/latest/productive/qa/pysa.html
https://www.python4data.science/en/latest/productive/qa/wily.html
http://carpentries-incubator.github.io/python-testing/

Python basics, Release 24.1.0

16.1 Unittest

unittest supports you in test automation with shared setup and tear-down code as well as aggregation and independence
of tests.

It provides the following test concepts:

Test Case
tests a single scenario.

Test Fixture
is a consistent test environment.

See also:
• pytest fixtures

• About fixtures

• Fixtures reference

• How to use fixtures

Test Suite
is a collection of several test cases.

Test Runner
runs through a Test Suite and displays the results.

16.1.1 Example

Suppose you have implemented the following add method in the test_arithmetic.py module:

1 def add(x, y):
2 """
3 >>> add(7,6)
4 13
5 """
6 return x + y

. . . then you can test this method with a Unittest.

1. To do this, you must first import your module and the unittest module:

1 import unittest
2 class TestArithmetic(unittest.TestCase):

2. Then you can write a test method that illustrates your addition method:

6 class TestArithmetic(unittest.TestCase):
7 def test_addition(self):
8 self.assertEqual(arithmetic.add(7, 6), 13)
9

3. In order to import the unittests into other modules, you should add the following lines:

23 if __name__ == "__main__":
24 unittest.main()

154 Chapter 16. Testing

https://docs.python.org/3/library/unittest.html
https://docs.pytest.org/en/latest/fixture.html
https://docs.pytest.org/en/latest/explanation/fixtures.html#about-fixtures
https://docs.pytest.org/en/latest/reference/fixtures.html
https://docs.pytest.org/en/latest/how-to/fixtures.html#how-to-fixtures

Python basics, Release 24.1.0

4. Finally, all tests in test_arithmetic.py can be executed:

$ bin/python test_arithmetic.py
....
--
Ran 4 tests in 0.000s

OK

C:> python test_arithmetic.py
....
--
Ran 4 tests in 0.000s

OK

. . . or a little more detailed:

$ python test_arithmetic.py -v
test_addition (__main__.TestArithmetic) ... ok
test_division (__main__.TestArithmetic) ... ok
test_multiplication (__main__.TestArithmetic) ... ok
test_subtraction (__main__.TestArithmetic) ... ok

--
Ran 4 tests in 0.000s

OK

C:> Scripts\python test_arithmetic.py -v
test_addition (__main__.TestArithmetic) ... ok
test_division (__main__.TestArithmetic) ... ok
test_multiplication (__main__.TestArithmetic) ... ok
test_subtraction (__main__.TestArithmetic) ... ok

--
Ran 4 tests in 0.000s

OK

See also:
• unittest — Unit testing framework

16.1. Unittest 155

https://docs.python.org/3/library/unittest.html

Python basics, Release 24.1.0

16.2 Example: Testing an SQLite database

1. To test whether the database library.db was created with create_db.py, we import ../save-data/
create_db.py and os in addition to sqlite3 and unittest:

1 import os
2 import sqlite3
3 import unittest
4

5 import create_db

2. Then we first define a test class TestCreateDB:

8 class TestCreateDB(unittest.TestCase):

3. In it we then define the test method test_db_exists, in which we use assert to assume that the file exists in
os.path:

9 def test_db_exists(self):
10 assert os.path.exists("library.db")

4. Now we also check whether the books table was created. For this we try to create the table again and expect
with assertRaises that sqlite is terminated with an OperationalError:

12 def test_table_exists(self):
13 with self.assertRaises(sqlite3.OperationalError):
14 create_db.cursor.execute("CREATE TABLE books(title text)")

5. We do not want to carry out further tests on a database in the file system but in an SQLite database in the working
memory:

17 class TestCommands(unittest.TestCase):
18 def setUp(self):
19 self.conn = sqlite3.connect(":memory:")
20 cursor = self.conn.cursor()

See also:
You can find more examples for testing your SQLite database functions in the SQLite test suite test_sqlite3.

16.3 Doctest

The Python module doctest checks whether the tests specified in a docstring are fulfilled.

1. In arithmetic.py you can add the following docstring:

9 def divide(x, y):
10 """Divides the first parameter by the second
11 >>> x, y, z = 7, -6.0, 0
12 >>> divide(x, y)
13 -1.1666666666666667
14 >>> divide(x, z)
15 Traceback (most recent call last):

(continues on next page)

156 Chapter 16. Testing

https://docs.python.org/3/library/os.html
https://docs.python.org/3/library/sqlite3.html
https://docs.python.org/3/library/unittest.html
https://docs.python.org/3/library/os.path.html
https://github.com/python/cpython/tree/main/Lib/test/test_sqlite3
https://docs.python.org/3/library/doctest.html

Python basics, Release 24.1.0

(continued from previous page)

16 File "<stdin>", line 1, in <module>
17 ZeroDivisionError: division by zero
18 """

2. Then you can test it with:

$ python -m doctest test/arithmetic.py -v
Trying:

add(7,6)
Expecting:

13
ok
Trying:

x, y, z = 7, -6.0, 0
Expecting nothing
ok
Trying:

divide(x, y)
Expecting:

-1.1666666666666667
ok
Trying:

divide(x, z)
Expecting:

Traceback (most recent call last):
File "<stdin>", line 1, in <module>

ZeroDivisionError: division by zero
ok
Trying:

multiply(7,6)
Expecting:

42
ok
Trying:

subtract(7,6)
Expecting:

1
ok
1 items had no tests:

arithmetic
4 items passed all tests:

1 tests in arithmetic.add
3 tests in arithmetic.divide
1 tests in arithmetic.multiply
1 tests in arithmetic.subtract

6 tests in 5 items.
6 passed and 0 failed.
Test passed.

C:> Scripts\python -m doctest arithmetic.py -v
Trying:

add(7,6)
(continues on next page)

16.3. Doctest 157

Python basics, Release 24.1.0

(continued from previous page)

Expecting:
13

ok
Trying:

x, y, z = 7, -6.0, 0
Expecting nothing
ok
Trying:

divide(x, y)
Expecting:

-1.1666666666666667
ok
Trying:

divide(x, z)
Expecting:

Traceback (most recent call last):
File "<stdin>", line 1, in <module>

ZeroDivisionError: division by zero
ok
Trying:

multiply(7,6)
Expecting:

42
ok
Trying:

subtract(7,6)
Expecting:

1
ok
1 items had no tests:

arithmetic
4 items passed all tests:

1 tests in arithmetic.add
3 tests in arithmetic.divide
1 tests in arithmetic.multiply
1 tests in arithmetic.subtract

6 tests in 5 items.
6 passed and 0 failed.
Test passed.

3. So that the doctests can also be imported into other modules, you should add the following lines:

38 if __name__ == "__main__":
39 import doctest
40

41 doctest.testmod(verbose=True)

158 Chapter 16. Testing

Python basics, Release 24.1.0

16.4 Hypothesis

Hypothesis is a library that allows you to write tests that are parameterised from a source of examples. It then generates
simple and understandable examples that can be used to make your tests fail and find bugs with little effort.

1. Install Hypothesis:

$ bin/python -m pip install hypothesis

C:> Scripts\python -m pip install hypothesis

Alternatively, Hypothesis can also be installed with extensions, for example:

$ bin/python -m pip install hypothesis[numpy,pandas]

C:> Scripts\python -m pip install hypothesis[numpy,pandas]

2. Write a test:

1. Imports:

1 import pytest
2 from hypothesis import given
3 from hypothesis.strategies import floats, lists

2. Test:

6 @given(lists(floats(allow_nan=False, allow_infinity=False), min_size=1))
7 def test_mean(ls):
8 mean = sum(ls) / len(ls)
9 assert min(ls) <= mean <= max(ls)

3. Perform test:

$ bin/python -m pytest test_hypothesis.py
============================= test session starts ==============================
platform darwin -- Python 3.9.7, pytest-6.2.5, py-1.10.0, pluggy-1.0.0
rootdir: /Users/veit/cusy/trn/python-basics/docs/test
plugins: hypothesis-6.23.2
collected 1 item

test_hypothesis.py F [100%]

=================================== FAILURES ===================================
__________________________________ test_mean ___________________________________

@given(lists(floats(allow_nan=False, allow_infinity=False), min_size=1))
> def test_mean(ls):

test_hypothesis.py:6:
_ _

ls = [9.9792015476736e+291, 1.7976931348623157e+308]

(continues on next page)

16.4. Hypothesis 159

https://hypothesis.readthedocs.io/

Python basics, Release 24.1.0

(continued from previous page)

@given(lists(floats(allow_nan=False, allow_infinity=False), min_size=1))
def test_mean(ls):

mean = sum(ls) / len(ls)
> assert min(ls) <= mean <= max(ls)
E assert inf <= 1.7976931348623157e+308
E + where 1.7976931348623157e+308 = max([9.9792015476736e+291, 1.
→˓7976931348623157e+308])

test_hypothesis.py:8: AssertionError
---------------------------------- Hypothesis ----------------------------------
Falsifying example: test_mean(

ls=[9.9792015476736e+291, 1.7976931348623157e+308],
)
=========================== short test summary info ============================
FAILED test_hypothesis.py::test_mean - assert inf <= 1.7976931348623157e+308
============================== 1 failed in 0.44s ===============================

C:> Scripts\python -m pytest test_hypothesis.py
============================= test session starts ==============================
platform win32 -- Python 3.9.7, pytest-6.2.5, py-1.10.0, pluggy-1.0.0
rootdir: C:\Users\veit\python-basics\docs\test
plugins: hypothesis-6.23.2
collected 1 item

test_hypothesis.py F [100%]

=================================== FAILURES ===================================
__________________________________ test_mean ___________________________________

@given(lists(floats(allow_nan=False, allow_infinity=False), min_size=1))
> def test_mean(ls):

test_hypothesis.py:6:
_ _

ls = [9.9792015476736e+291, 1.7976931348623157e+308]

@given(lists(floats(allow_nan=False, allow_infinity=False), min_size=1))
def test_mean(ls):

mean = sum(ls) / len(ls)
> assert min(ls) <= mean <= max(ls)
E assert inf <= 1.7976931348623157e+308
E + where 1.7976931348623157e+308 = max([9.9792015476736e+291, 1.
→˓7976931348623157e+308])

test_hypothesis.py:8: AssertionError
---------------------------------- Hypothesis ----------------------------------
Falsifying example: test_mean(

ls=[9.9792015476736e+291, 1.7976931348623157e+308],
)
=========================== short test summary info ============================
FAILED test_hypothesis.py::test_mean - assert inf <= 1.7976931348623157e+308

(continues on next page)

160 Chapter 16. Testing

Python basics, Release 24.1.0

(continued from previous page)

============================== 1 failed in 0.44s ===============================

See also:
Hypothesis for the Scientific Stack

16.5 pytest

pytest is an alternative to Python’s Unittest module that simplifies testing even further.

16.5.1 Features

• More detailed information about failed assert statements

• Automatic detection of test modules and functions

• Modular fixtures for the management of small or parameterised, long-lived test resources

• Can also execute unit tests without presets

• Extensive plug-in architecture, with over 800 external plug-ins

16.5.2 Installation

You can install pytest in virtual environments <virtuelle-umgebungen> with:

$ python -m pip install pytest
Collecting pytest
...
Successfully installed attrs-21.2.0 iniconfig-1.1.1 pluggy-1.0.0 py-1.10.0 pytest-6.2.5␣
→˓toml-0.10.2

C:> python -m pip install pytest
Collecting pytest
...
Successfully installed attrs-21.2.0 iniconfig-1.1.1 pluggy-1.0.0 py-1.10.0 pytest-6.2.5␣
→˓toml-0.10.2

Examples

You can simply create a file test_one.py with the following content:

1 def test_sorted():
2 assert sorted([4, 2, 1, 3]) == [1, 2, 3, 4]

The test_sorted() function is recognised by pytest as a test function because it starts with test_ and is in a file that
starts with test_. When the test is executed, the assert statement determines whether the test succeeded or failed.
assert is a Python built-in keyword and raises an assertionError exception if the expression after assert is false.
Any uncaught exception thrown within a test will cause the test to fail.

16.5. pytest 161

https://hypothesis.readthedocs.io/en/latest/numpy.html
https://docs.pytest.org/en/latest/index.html

Python basics, Release 24.1.0

Execute pytest

$ cd docs/test/pytest
$ pytest test_one.py
============================= test session starts ==============================
...
collected 1 item

test_one.py . [100%]

============================== 1 passed in 0.00s ===============================

The dot after test_one.py means that a test has been performed and passed. [100%] is a percentage display that
indicates how many tests of the test session have been performed so far. As there is only one test, one test corresponds
to 100% of the tests. If you need more information, you can use -v or --verbose:

$ pytest -v test_one.py
============================= test session starts ==============================
...
collected 1 item

test_one.py::test_sorted PASSED [100%]

============================== 1 passed in 0.00s ===============================

test_two.py on the other hand, fails:

$ pytest test_two.py
collected 1 item

test_two.py F [100%]

=================================== FAILURES ===================================
_________________________________ test_failing _________________________________

def test_failing():
> assert sorted([4, 2, 1, 3]) == [0, 1, 2, 3]
E assert [1, 2, 3, 4] == [0, 1, 2, 3]
E At index 0 diff: 1 != 0
E Use -v to get more diff

test_two.py:2: AssertionError
=========================== short test summary info ============================
FAILED test_two.py::test_failing - assert [1, 2, 3, 4] == [0, 1, 2, 3]
============================== 1 failed in 0.03s ===============================

The failed test, test_in, gets its own section to show us why it failed. And pytest tells us exactly what the first error
is. This additional section is called traceback. That’s already a lot of information, but there’s a line that says we get the
full diff with -v. Let’s do that:

$ pytest -v test_two.py
============================= test session starts ==============================
...

(continues on next page)

162 Chapter 16. Testing

Python basics, Release 24.1.0

(continued from previous page)

collected 1 item

test_two.py::test_failing FAILED [100%]

=================================== FAILURES ===================================
_________________________________ test_failing _________________________________

def test_failing():
> assert sorted([4, 2, 1, 3]) == [0, 1, 2, 3]
E assert [1, 2, 3, 4] == [0, 1, 2, 3]
E At index 0 diff: 1 != 0
E Full diff:
E - [0, 1, 2, 3]
E ? ---
E + [1, 2, 3, 4]
E ? +++

test_two.py:2: AssertionError
=========================== short test summary info ============================
FAILED test_two.py::test_failing - assert [1, 2, 3, 4] == [0, 1, 2, 3]
============================== 1 failed in 0.03s ===============================

pytest adds + and - signs to show us exactly the differences.

So far we have run pytest with the command pytest FILE.py. Now let’s run pytest in a few more ways. If
you don’t specify any files or directories, pytest will look for tests in the current working directory and subdirectories;
more specifically, it will look for .py files that start with test_ or end with _test. If you start pytest in the directory
docs/test/pytest without options, two files with tests will be run:

$ pytest --tb=no
============================= test session starts ==============================
...

test_one.py . [50%]
test_two.py F [100%]

=========================== short test summary info ============================
FAILED test_two.py::test_failing - assert [1, 2, 3, 4] == [0, 1, 2, 3]
========================= 1 failed, 1 passed in 0.00s ==========================

I have also used the --tb=no option to disable traceback as we don’t really need the full output at the moment.

We can also specify a test function within a test file to be executed by adding ::test_name to the file name:

$ pytest -v test_one.py::test_sorted
============================= test session starts ==============================
...
collected 1 item

test_one.py::test_sorted PASSED [100%]

============================== 1 passed in 0.00s ===============================

16.5. pytest 163

Python basics, Release 24.1.0

Test results

The possible results of a test function include

PASSED (.)
The test was performed successfully.

FAILED (F)
The test was not performed successfully.

SKIPPED (s)
The test was skipped.

XFAIL (x)
The test should not pass, but was performed and failed.

XPASS (X)
The test was marked xfail, but it ran and passed.

ERROR (E)
An exception occurred during the execution of a Test fixtures, but not during the execution of a test function.

Writing test functions

assert statements

When writing test functions, the normal pytest assert statement is your most important tool. The simplicity of this
statement leads many developers to favour pytest over other frameworks. Below is a list of some of Unittest’s assert
forms and assert helper functions:

pytest unittest
assert something assertTrue(something)
assert not something assertFalse(something)
assert x == y assertEqual(x, y)
assert x != y assertNotEqual(x, y)
assert x <= y assertLessEqual(x, y)
assert x is None assertIsNone(x)
assert x is not None assertIsNotNone(x)

With pytest you can use assert EXPRESSION with any expression. If the expression would evaluate to False when
converted to a boolean value, the test would fail.

pytest includes a function called assert rewriting that intercepts assert calls and replaces them with something
that can tell you more about why your assumptions failed. Let’s see how helpful this rewriting is by looking at a failed
assert test:

def test_equality_fails():
i1 = Item("do something", "veit")
i2 = Item("do something else", "veit")
assert i1 == i2

This test fails, but the traceback information is interesting:

164 Chapter 16. Testing

Python basics, Release 24.1.0

$ pytest tests/test_item_fails.py
============================= test session starts ==============================
...
collected 1 item

tests/test_item_fails.py F [100%]

=================================== FAILURES ===================================
_____________________________ test_equality_fails ______________________________

def test_equality_fails():
i1 = Item("do something", "veit")
i2 = Item("do something else", "veit.schiele")

> assert i1 == i2
E AssertionError: assert Item(summary=...odo', id=None) == Item(summary=...odo',␣
→˓id=None)
E
E Omitting 1 identical items, use -vv to show
E Differing attributes:
E ['summary', 'owner']
E
E Drill down into differing attribute summary:
E summary: 'do something' != 'do something else'...
E
E ...Full output truncated (8 lines hidden), use '-vv' to show

tests/test_item_fails.py:7: AssertionError
=========================== short test summary info ============================
FAILED tests/test_item_fails.py::test_equality_fails - AssertionError: assert␣
→˓Item(summary=...odo', id=None) == Item(summary=...od...
============================== 1 failed in 0.03s ===============================

That’s a lot of information:

For each failed test, the exact line of the error is displayed with a > pointing to the error.

The E lines show you additional information about the assert error so you can figure out what went wrong. I inten-
tionally entered two mismatches in test_equality_fails(), but only the first one was displayed. Let’s try again
with the -vv option as suggested in the error message:

$ pytest -vv tests/test_item_fails.py
============================= test session starts ==============================
...
collected 1 item

tests/test_item_fails.py::test_equality_fails FAILED [100%]

=================================== FAILURES ===================================
_____________________________ test_equality_fails ______________________________

def test_equality_fails():
i1 = Item("do something", "veit")
i2 = Item("do something else", "veit.schiele")

> assert i1 == i2
(continues on next page)

16.5. pytest 165

Python basics, Release 24.1.0

(continued from previous page)

E AssertionError: assert Item(summary='do something', owner='veit', state='todo',␣
→˓id=None) == Item(summary='do something else', owner='veit.schiele', state='todo',␣
→˓id=None)
E
E Matching attributes:
E ['state']
E Differing attributes:
E ['summary', 'owner']
E
E Drill down into differing attribute summary:
E summary: 'do something' != 'do something else'
E - do something else
E ? -----
E + do something
E
E Drill down into differing attribute owner:
E owner: 'veit' != 'veit.schiele'
E - veit.schiele
E + veit

tests/test_item_fails.py:7: AssertionError
=========================== short test summary info ============================
FAILED tests/test_item_fails.py::test_equality_fails - AssertionError: assert␣
→˓Item(summary='do something', owner='veit', state='to...
============================== 1 failed in 0.03s ===============================

pytest has listed exactly which attributes match and which do not. The exact deviations were also highlighted.

For comparison, we can see what Python displays for assert errors. To be able to call the test directly from Python,
we need to add a block at the end of tests/test_item_fails.py:

if __name__ == "__main__":
test_equality_fails()

If we now run the test with Python, we get the following result:

python tests/test_item_fails.py
Traceback (most recent call last):
File "tests/test_item_fails.py", line 11, in <module>
test_equality_fails()

File "tests/test_item_fails.py", line 7, in test_equality_fails
assert i1 == i2

^^^^^^^^
AssertionError

That doesn’t tell us much. The pytest output gives us much more information about why our assumptions failed.

166 Chapter 16. Testing

Python basics, Release 24.1.0

Failing with pytest.fail() and exceptions

Failing assertions is the main way that tests fail. But this is not the only way. A test also fails if there is an uncaught
Exceptions. This can happen when

• an assert statement fails, resulting in an AssertionError exception,

• the test code calls pytest.fail(), which leads to an exception, or

• another exception is thrown.

Although any exception can cause a test to fail, I prefer to use assert. In rare cases where assert is not appropriate,
I usually use pytest.fail().

Here is an example of using pytest’s fail() function to explicitly fail a test:

def test_with_fail():
i1 = Item("do something", "veit")
i2 = Item("do something else", "veit.schiele")
if i1 != i2:

pytest.fail("The items are not identical!")

The output is as follows:

pytest tests/test_item_fails.py
============================= test session starts ==============================
...
collected 1 item

tests/test_item_fails.py F [100%]

=================================== FAILURES ===================================
________________________________ test_with_fail ________________________________

def test_with_fail():
i1 = Item("do something", "veit")
i2 = Item("do something else", "veit.schiele")
if i1 != i2:

> pytest.fail("The items are not identical!")
E Failed: The items are not identical!

tests/test_item_fails.py:10: Failed
=========================== short test summary info ============================
FAILED tests/test_item_fails.py::test_with_fail - Failed: The items are not identical!
============================== 1 failed in 0.03s ===============================

When calling pytest.fail() or throwing an exception, we do not get the assert rewriting provided by pytest.
However, there are useful occasions to use pytest.fail(), such as in an assertion utility.

16.5. pytest 167

Python basics, Release 24.1.0

Writing assertion helper functions

An assertion helper function is used to package a complicated assertion check. For example, the Item data class
is set up so that two items with different IDs still report equality. If we want a stricter check, we could write a helper
function called assert_ident as follows:

import pytest

from items import Item

def assert_ident(i1: Item, i2: Item):
__tracebackhide__ = True
assert i1 == i2
if i1.id != i2.id:

pytest.fail(f"The IDs do not match: {i1.id} != {i2.id}")

def test_ident():
i1 = Item("something to do", id=42)
i2 = Item("something to do", id=42)
assert_ident(i1, i2)

def test_ident_fail():
i1 = Item("something to do", id=42)
i2 = Item("something to do", id=43)
assert_ident(i1, i2)

The assert_ident function sets __tracebackhide__ = True. The result is that failed tests are not included in the
traceback. The normal assert i1 == i2 is then used to check everything except id for equality.

Finally, the IDs checked pytest.fail() are used to fail the test with a helpful message. Let’s take a look at what this
looks like after execution:

$ pytest tests/test_helper.py
============================= test session starts ==============================
...
collected 2 items

tests/test_helper.py .F [100%]

=================================== FAILURES ===================================
_______________________________ test_ident_fail ________________________________

def test_ident_fail():
i1 = Item("something to do", id=42)
i2 = Item("something to do", id=43)

> assert_ident(i1, i2)
E Failed: The IDs do not match: 42 != 43

tests/test_helper.py:22: Failed
=========================== short test summary info ============================
FAILED tests/test_helper.py::test_ident_fail - Failed: The IDs do not match: 42 != 43

(continues on next page)

168 Chapter 16. Testing

Python basics, Release 24.1.0

(continued from previous page)

========================= 1 failed, 1 passed in 0.03s ==========================

Testing for expected exceptions

We have looked at how any exception can cause a test to fail. But what if part of the code we are testing should raise an
exception? For this we use pytest.raises() to test for expected exceptions. An example of this would be the Items
API, which has an ItemsDB class that requires a path argument.

from items.api import ItemsDB

def test_db_exists():
ItemsDB()

$ pytest --tb=short tests/test_db.py
============================= test session starts ==============================
...
collected 1 item

tests/test_db.py F [100%]

=================================== FAILURES ===================================
________________________________ test_db_exists ________________________________
tests/test_db.py:5: in test_db_exists

ItemsDB()
E TypeError: ItemsDB.__init__() missing 1 required positional argument: 'db_path'
=========================== short test summary info ============================
FAILED tests/test_db.py::test_db_exists - TypeError: ItemsDB.__init__() missing 1␣
→˓required positional argument: 'db_p...
============================== 1 failed in 0.03s ===============================

Here I have used the shorter traceback format --tb=short because we don’t need to see the full traceback to find out
which exception was thrown.

The exception TypeError seems to make sense because the error occurs when trying to initialise the custom ItemsDB
type. We can write a test to ensure that this exception is thrown, something like this:

import pytest

from items.api import ItemsDB

def test_db_exists():
with pytest.raises(TypeError):

ItemsDB()

The instruction with pytest.raises(TypeError): states that the next code block should throw a TypeError ex-
ception. If no exception or another exception is raised, the test fails.

We have just checked the type of the exception in test_db_exists(). We can also check if the message is correct,
or any other aspect of the exception, such as additional parameters:

16.5. pytest 169

Python basics, Release 24.1.0

def test_db_exists():
match_regex = "missing 1 .* positional argument"
with pytest.raises(TypeError, match=match_regex):

ItemsDB()

or

def test_db_exists():
with pytest.raises(TypeError) as exc_info:

ItemsDB()
expected = "missing 1 required positional argument"
assert expected in str(exc_info.value)

Structure test suite

You should ensure that assertions are kept at the end of test functions. This recommendation is so common that it has
at least two names:

Arrange-Act-Assert (AAA)
became popular as part of test-driven development (TDD).

Given-When-Then (GWT)
is used in the context of behaviour-driven development (BDD).

The division into these free phases has many advantages. This separates the parts

Given/Arrange
The initial state. This is where you set up data or the environment to prepare the action.

When/Act
An action is executed. This is the focus of the test – the behaviour that we want to ensure works correctly.

Then/Assert
An expected result or end state should occur. At the end of the test, we make sure that the action has led to the
expected behaviour.

A common counter-pattern is the Arrange–Assert–Act–Assert–Act–Assert. . . pattern, where a variety of actions fol-
lowed by state or behavioural checks validate a workflow. This seems reasonable until the test fails. Any of the actions
could have caused the failure, so the test doesn’t focus on testing a particular behaviour. Or it could have been the setup
in Arrange that caused the error. This nested assert pattern leads to tests that are difficult to debug and maintain.
Sticking to * Given-When-Then* or Arrange-Act-Assert keeps the test focused and makes it more maintainable.

Let’s apply this structure to one of our first tests as an example:

def test_equality_fail():
Given two item objects with known contents
i1 = Item("do something", "veit")
i2 = Item("do something else", "veit.schiele")
WHEN the two item objects are not identical
if i1 != i2:

THEN the result will be a string
pytest.fail("The items are not identical!")

The structure helps you to organise the test functions and focus on testing one behaviour. The structure also helps you
to think of other test cases. Focusing on an initial state helps you to think of other states that might be relevant for
testing the same action. Similarly, focusing on an ideal outcome helps you think of other possible outcomes, such as
failure states or error states, that should also be tested with other test cases.

170 Chapter 16. Testing

Python basics, Release 24.1.0

Grouping tests with classes

Up to now, we have written test functions within test modules in a file system directory. This structuring of the test
code actually works quite well and is sufficient for many projects. However, pytest also allows us to group tests with
classes. Let’s take some of the test functions that relate to the equality of items and group them into a class:

class TestEquality:
def test_equality(self):

i1 = Item("do something", "veit", "todo", 42)
i2 = Item("do something", "veit", "todo", 42)
assert i1 == i2

def test_equality_with_diff_ids(self):
i1 = Item("do something", "veit", "todo", 42)
i2 = Item("do something", "veit", "todo", 43)
assert i1 == i2

def test_inequality(self):
i1 = Item("do something", "veit", "todo", 42)
i2 = Item("do something else", "veit", "done", 42)
assert i1 != i2

The code looks pretty much the same as before, with the exception that each method must have an initial self argument.
We can now execute all these methods together by specifying the class:

$ pytest -v tests/test_classes.py::TestEquality
============================= test session starts ==============================
...
collected 3 items

tests/test_classes.py::TestEquality::test_equality PASSED [33%]
tests/test_classes.py::TestEquality::test_equality_with_diff_ids PASSED [66%]
tests/test_classes.py::TestEquality::test_inequality PASSED [100%]

============================== 3 passed in 0.00s ===============================

However, we can still call a single method:

$ pytest -v tests/test_classes.py::TestEquality::test_equality
============================= test session starts ==============================
...
collected 1 item

tests/test_classes.py::TestEquality::test_equality PASSED [100%]

============================== 1 passed in 0.00s ===============================

If you are familiar with Object Orientation and class inheritance, you can use hierarchies of test classes for inherited
helper methods. I recommend that you use test classes sparingly and mainly for grouping, even in productive test code.
If you go to too much trouble with test class inheritance, it will get confusing in the future.

16.5. pytest 171

Python basics, Release 24.1.0

Executing a subset of tests

In the previous section, we used test classes to execute a subset of tests. Executing a small group of tests is very handy
when debugging, or if you want to limit the tests to a specific section of the codebase you are working on. pytest allows
you to execute a subset of tests in different ways:

Subset Syntax
All tests in one directory pytest path
All tests in a module pytest path/test_module.py
All tests in a class pytest path/test_module.py::TestClass
Single test function pytest path/test_module.py::test_function
Single test method pytest path/test_module.py::TestClass::test_method
Tests that correspond to a name pattern pytest -k pattern
Tests by marker siehe Markers

Whether pytest finds your test code depends on the naming:

• Test files should be named test_something.py or something_test.py.

• Test methods and functions should be named test_something.

• Test classes should be named TestSomething.

Tip: Use a directory structure that corresponds to the way you want to run your code, because it is easy to run
a complete subdirectory. This way you can divide features and functions or use subsystems as a basis or orientate
yourself on the code structure.

You can also use -k pattern to filter directories, classes or test prefixes, for example all tests of class TestEquality.

$ pytest -v -k TestEquality
============================= test session starts ==============================
...
collected 7 items / 4 deselected / 3 selected

test_classes.py::TestEquality::test_equality PASSED [33%]
test_classes.py::TestEquality::test_equality_with_diff_ids PASSED [66%]
test_classes.py::TestEquality::test_inequality PASSED [100%]

======================= 3 passed, 4 deselected in 0.00s ========================

or all tests with equality in the name:

pytest -v --tb=no -k equality
============================= test session starts ==============================
...
collected 7 items / 3 deselected / 4 selected

test_classes.py::TestEquality::test_equality PASSED [25%]
test_classes.py::TestEquality::test_equality_with_diff_ids PASSED [50%]
test_classes.py::TestEquality::test_inequality PASSED [75%]
test_item_fail.py::test_equality_fail FAILED [100%]

(continues on next page)

172 Chapter 16. Testing

Python basics, Release 24.1.0

(continued from previous page)

=========================== short test summary info ============================
FAILED test_item_fail.py::test_equality_fail - Failed: The items are not identical!
================== 1 failed, 3 passed, 3 deselected in 0.01s ===================

Unfortunately, one of these is our error example. We can remove it by expanding the expression:

$ pytest -v --tb=no -k "equality and not equality_fail"
============================= test session starts ==============================
...
collected 7 items / 4 deselected / 3 selected

test_classes.py::TestEquality::test_equality PASSED [33%]
test_classes.py::TestEquality::test_equality_with_diff_ids PASSED [66%]
test_classes.py::TestEquality::test_inequality PASSED [100%]

======================= 3 passed, 4 deselected in 0.00s ========================

The keywords and, not, or and () are allowed to create complex expressions. Here is a test run of all tests with or
“ids” in the name, but not in the “TestEquality” class:

$ pytest -v --tb=no -k "(inequality or id) and not _fail"
============================= test session starts ==============================
...
collected 7 items / 4 deselected / 3 selected

test_classes.py::TestEquality::test_equality_with_diff_ids PASSED [33%]
test_classes.py::TestEquality::test_inequality PASSED [66%]
test_helper.py::test_ident PASSED [100%]

======================= 3 passed, 4 deselected in 0.00s ========================

The -k keyword option, together with and, not and or, offers great flexibility when selecting the tests you want to run.
This proves to be very helpful when troubleshooting or developing new tests.

Tip: It is a good idea to use quotation marks when selecting a test to run as the hyphens, brackets and spaces can
confuse the shells.

Test fixtures

Now that you have used pytest to write and execute test functions, let’s move on to fixtures, which are essential for
structuring test code for almost any non-trivial software system. Fixtures are functions that are executed by pytest
before (and sometimes after) the actual test functions. The code in the fixture can do whatever you want. You can use
fixtures to get a data set for the tests to work with. You can use fixtures to put a system into a known state before a test
is executed. Fixtures are also used to provide data for multiple tests.

In this chapter, you will learn how to create and work with fixtures. You will learn how to structure fixtures to store
both setup and teardown code. You will use scope to run fixtures once across many tests and learn how tests can use
multiple fixtures. You will also learn how to track code execution through fixtures and test code.

But before you familiarise yourself with fixtures and use them to test Items, let’s take a look at a small example fixture
and learn how fixtures and test functions are connected.

16.5. pytest 173

Python basics, Release 24.1.0

First steps with fixtures

Here is a simple fixture that returns a number:

import pytest

@pytest.fixture()
def some_data():

"""The answer to the ultimate question"""
return 42

def test_some_data(some_data):
"""Use fixture return value in a test."""
assert some_data == 42

The @pytest.fixture() decorator is used to tell pytest that a function is a fixture. If you include the fixture name
in the parameter list of a test function, pytest knows that the function should be executed before the test is run. Fixtures
can perform work and also return data to the test function. In this case, @pytest.fixture() decorates the func-
tion some_data(). The test test_some_data() has the name of the fixture, some_data() as a parameter. pytest
recognises this and searches for a fixture with this name.

Test fixtures in pytest refer to the mechanism that allows the separation of preparation for and cleanup after code from
your test functions. pytest handles exceptions during fixtures differently than during a test function. An Exception
or an assert error or a pytest.fail() call that occurs during the actual test code leads to a Fail result. During a
fixture, however, the test function is reported as an error. This distinction is helpful when troubleshooting if a test has
failed. If a test ends with a fail, the error is somewhere in the test function; if a test ends with an error, the error is
somewhere in a fixture.

Using fixtures for setup and teardown

Fixtures will be a great help when testing the Items application. The Items application consists of an API that does
most of the work and logic, a lean CLI and a database. Handling the database is an area where fixtures will be of great
help:

from pathlib import Path
from tempfile import TemporaryDirectory

import items

def test_empty():
with TemporaryDirectory() as db_dir:

db_path = Path(db_dir)
db = items.ItemsDB(db_path)
count = db.count()
db.close()
assert count == 0

To be able to call count(), we need a database object, which we obtain by calling items.ItemsDB(db_path)().
The items.ItemsDB() function returns an ItemsDB object. The parameter db_path must be a pathlib.Path
object that points to the database directory. For testing, a temporary directory that we obtain with tempfile.
TemporaryDirectory() works.

174 Chapter 16. Testing

https://docs.pytest.org/en/latest/reference/reference.html#pytest.fail

Python basics, Release 24.1.0

However, this test function contains some problems: The code to set up the database before we call count() is not
really what we want to test. Also, the assert statement cannot be done before calling db.close(), because if the
assert statement fails, the database connection will no longer be closed. These problems can be solved with pytest
fixture:

import pytest

@pytest.fixture()
def items_db():

with TemporaryDirectory() as db_dir:
db_path = Path(db_dir)
db = items.ItemsDB(db_path)
yield db
db.close()

def test_empty(items_db):
assert items_db.count() == 0

The test function itself is now much easier to read, as we have outsourced the entire database initialisation to a fixture
called items_db. The items_db fixture prepares the test by providing the database and then outputting the database
object. Only then is the test executed. And only after the test has run is the database closed again.

Fixture functions are executed before the tests that use them. If there is a yield in the function, it stops there, passes
control to the tests and continues in the next line after the tests have been completed. The code above the yield is
setup and the code after the yield is teardown. The teardown is guaranteed to be executed regardless of what happens
during the tests.

In our example, yield takes place within a context manager with a temporary directory. This directory remains in
place while the fixture is in use and the tests are running. At the end of the test, control is passed back to the fixture,
db.close() can be executed and the with block can close access to the directory.

We can also use fixtures in several tests, for example in

def test_count(items_db):
items_db.add_item(items.Item("something"))
items_db.add_item(items.Item("something else"))
assert items_db.count() == 2

test_count() uses the same items_db fixture. This time we take the empty database and add two items before
checking the count. We can now use items_db for any test that requires a configured database. The individual tests,
such as test_empty() and test_count(), can be kept smaller and focus on what we really want to test, rather than
setup and teardown.

Show fixture execution with --setup-show

Now that we have two tests using the same fixture, it would be interesting to know in which order they are called. pytest
offers the command line option --setup-show, which shows us the order of operations of tests and fixtures, including
the setup and teardown phases of the fixtures:

$ pytest --setup-show tests/test_count.py
============================= test session starts ==============================
...

(continues on next page)

16.5. pytest 175

Python basics, Release 24.1.0

(continued from previous page)

collected 2 items

tests/test_count.py
SETUP F items_db
tests/test_count.py::test_empty (fixtures used: items_db).
TEARDOWN F items_db
SETUP F items_db
tests/test_count.py::test_count (fixtures used: items_db).
TEARDOWN F items_db

============================== 2 passed in 0.01s ===============================

We can see that our test is running, surrounded by the SETUP and TEARDOWN parts of the items_db fixture. The F in
front of the fixture name indicates that the fixture is using the function scope, meaning that the fixture is called before
each test function it uses, and then dismantled afterwards. Next, let’s take a look at the functional scope.

Defining the scope of a fixture

Each fixture has a specific scope, which determines the order of execution of setup and teardown in relation to the
execution of all test functions that use the fixture. The scope determines how often setup and teardown are executed
when they are used by multiple test functions.

However, if setting up and connecting to the database or creating large data sets is time-consuming, you may not want
to do this for every single test. We can change a range so that the slow part only happens once for multiple tests. Let’s
change the scope of our fixture so that the database is only opened once by adding scope="module" to the fixture
decorator:

@pytest.fixture(scope="module")
def items_db():

with TemporaryDirectory() as db_dir:
db_path = Path(db_dir)
db = items.ItemsDB(db_path)
yield db
db.close()

$ pytest --setup-show tests/test_count.py
============================= test session starts ==============================
...
collected 2 items

tests/test_count.py
SETUP M items_db

tests/test_count.py::test_empty (fixtures used: items_db).
tests/test_count.py::test_count (fixtures used: items_db).

TEARDOWN M items_db

============================== 2 passed in 0.01s ===============================

We have saved this setup time for the second test function. By changing the module scope, any test in this module that
uses the items_db fixture can use the same instance of it without incurring additional setup and teardown time.

However, the fixture parameter scope allows for more than just module:

176 Chapter 16. Testing

Python basics, Release 24.1.0

scope values Description
scope='function'Default value. Is executed once per test function.
scope='class' Executed once per test class, regardless of how many test methods the class contains.
scope='module'Executed once per module, regardless of how ny test functions or methods or other fixtures in the

module use it.
scope='package'Executed once per package or test directory, regardless of how many test functions or methods or

other fixtures are used in the package.
scope='session'Executed once per session. All test methods and functions that use a fixture with session scope

share a call for setup and teardown.

The scope is therefore determined when a fixture is defined and not at the point at which it is called. The test functions
that use a fixture do not control how often a fixture is set up and dismantled.

For a fixture defined within a test module, the session and package scopes behave exactly like the module scopes. To
be able to use these other scopes, we need to use a conftest.py file.

Sharing fixtures with conftest.py

You can insert fixtures into individual test files, but to share fixtures across multiple test files, you must use a conftest.
py file either in the same directory as the test file that uses it or in a parent directory. The conftest.py file is optional.
It is considered a local plugin by pytest and can contain hook functions and fixtures. Let’s start by moving the items_db
fixture from test_count.py to a conftest.py file in the same directory:

from pathlib import Path
from tempfile import TemporaryDirectory

import pytest

import items

@pytest.fixture(scope="session")
def items_db():

"""ItemsDB object connected to a temporary database"""
with TemporaryDirectory() as db_dir:

db_path = Path(db_dir)
db = items.ItemsDB(db_path)
yield db
db.close()

Note: Fixtures can only depend on other fixtures in the same or a larger area. A fixture with a function scope can
therefore depend on other fixtures with a function scope. A function scope fixture can also depend on class, module
and session scope fixtures, but not vice versa.

Warning: Although conftest.py is a Python module, it should not be imported from test files. The conftest.
py file is automatically read by pytest, so you do not need to import conftest anywhere.

16.5. pytest 177

Python basics, Release 24.1.0

Find where fixtures are defined

We have moved a fixture from the test module to a conftest.py file. We can have conftest.py files at really any
level of our test directory. The tests can use any fixture that is in the same test module as a test function, or in a
conftest.py file in the same directory, or at any level of the parent directory up to the root of the tests.

This creates a problem if you can’t remember where a particular fixture is located and you want to see the source code.
With pytest --fixtures we can display where the fixtures are defined:

pytest --fixtures
============================= test session starts ==============================
...
collected 10 items
cache -- .../_pytest/cacheprovider.py:532

Return a cache object that can persist state between testing sessions.
...
tmp_path_factory [session scope] -- .../_pytest/tmpdir.py:245

Return a :class:`pytest.TempPathFactory` instance for the test session.

tmp_path -- .../_pytest/tmpdir.py:260
Return a temporary directory path object which is unique to each test
function invocation, created as a sub directory of the base temporary
directory.

--------------------- fixtures defined from tests.conftest ---------------------
items_db [session scope] -- conftest.py:10

ItemsDB object connected to a temporary database

------------------ fixtures defined from tests.test_fixtures -------------------
some_data -- test_fixtures.py:5

The answer to the ultimate question

============================ no tests ran in 0.00s =============================

pytest shows us a list of all available fixtures that our test can use. This list contains a number of built-in fixtures, which
we will look at in Built-in fixtures, as well as fixtures provided by Plugins. The fixtures found in conftest.py files are
at the end of the list. If you specify a directory, pytest will list the fixtures that are available for tests in that directory.
If you specify the name of a test file, pytest also includes the fixtures defined in the test modules.

The output of pytest contains

• the first line of the docstring of the fixture; by adding -v, the entire docstring is included

• the file and line number in which the fixture is defined

• the path if the fixture is not in the current directory

Note: We have to use -v for pytest 6.x to get the path and the line numbers. Only from pytest 7 onwards will these be
added without any further option.

You can also use --fixtures-per-test to see which fixtures are used by each test and where the fixtures are defined:

178 Chapter 16. Testing

Python basics, Release 24.1.0

pytest --fixtures-per-test test_count.py::test_empty
============================= test session starts ==============================
...
collected 1 item

------------------------- fixtures used by test_empty --------------------------
------------------------------ (test_count.py:5) -------------------------------
items_db -- conftest.py:10

ItemsDB object connected to a temporary database

============================ no tests ran in 0.00s =============================

In this example, we have specified a single test: test_count.py::test_empty. However, files or directories can
also be specified.

Using multiple fixture levels

Our test code is still problematic at the moment, as both tests depend on the database being empty at the beginning.
This problem becomes very clear when we add a third test:

$ pytest test_count.py::test_count2
============================= test session starts ==============================
...
collected 1 item

test_count.py . [100%]

============================== 1 passed in 0.00s ===============================

It works when executed individually, but not when executed after test_count.py::test_count:

$ pytest test_count.py
============================= test session starts ==============================
...
collected 3 items

test_count.py ..F [100%]

=================================== FAILURES ===================================
_________________________________ test_count2 __________________________________

items_db = <items.api.ItemsDB object at 0x103d3a390>

def test_count2(items_db):
items_db.add_item(items.Item("something different"))

> assert items_db.count() == 1
E assert 3 == 1
E + where 3 = <bound method ItemsDB.count of <items.api.ItemsDB object at␣
→˓0x103d3a390>>()
E + where <bound method ItemsDB.count of <items.api.ItemsDB object at␣
→˓0x103d3a390>> = <items.api.ItemsDB object at 0x103d3a390>.count

(continues on next page)

16.5. pytest 179

Python basics, Release 24.1.0

(continued from previous page)

test_count.py:15: AssertionError
=========================== short test summary info ============================
FAILED test_count.py::test_count2 - assert 3 == 1
========================= 1 failed, 2 passed in 0.03s ==========================

There are three items in the database because the previous test already added two items before test_count2 was
executed. However, tests should not rely on the order of execution. test_count2 only succeeds if it is executed alone,
but fails if it is executed after test_count.

If we still want to try to work with an open database but start all tests with zero items in the database, we can do this
by adding another fixture in conftest.py:

@pytest.fixture(scope="session")
def db():

"""ItemsDB object connected to a temporary database"""
with TemporaryDirectory() as db_dir:

db_path = Path(db_dir)
db_ = items.ItemsDB(db_path)
yield db_
db_.close()

@pytest.fixture(scope="function")
def items_db(db):

"""ItemsDB object that's empty"""
db.delete_all()
return db

I have renamed the old items_db to db and moved it to the session area.

The items_db fixture has db in its parameter list, which means that it depends on the db fixture. In addition, items_db
is function-orientated, which is a narrower scope than db. If fixtures depend on other fixtures, they can only use
fixtures that have the same or a larger scope.

Let’s see if it works:

$ pytest --setup-show test_count.py
============================= test session starts ==============================
...
collected 3 items

test_count.py
SETUP S db

SETUP F items_db (fixtures used: db)
test_count.py::test_empty (fixtures used: db, items_db).
TEARDOWN F items_db
SETUP F items_db (fixtures used: db)
test_count.py::test_count (fixtures used: db, items_db).
TEARDOWN F items_db
SETUP F items_db (fixtures used: db)
test_count.py::test_count2 (fixtures used: db, items_db).
TEARDOWN F items_db

TEARDOWN S db

(continues on next page)

180 Chapter 16. Testing

Python basics, Release 24.1.0

(continued from previous page)

============================== 3 passed in 0.00s ===============================

We see that the setup for db is done first and has the scope of the session (from the S). The setup for items_db happens
next and before each test function call and has the scope of the function (from the F). In addition, all three tests are
passed.

Using fixtures for multiple stages can provide incredible speed advantages and maintain test order independence.

Using multiple fixtures per test or fixture

Another way to use multiple fixtures is to use more than one in a function or fixture. For example, we can put some
pre-planned items together to test them in one fixture:

@pytest.fixture(scope="session")
def items_list():

"""List of different Item objects"""
return [

items.Item("Add Python 3.12 static type improvements", "veit", "todo"),
items.Item("Add tips for efficient testing", "veit", "wip"),
items.Item("Update cibuildwheel section", "veit", "done"),
items.Item("Add backend examples", "veit", "done"),

]

Dann können wir sowohl empty_db als auch items_list in test_add.py verwenden:

def test_add_list(items_db, items_list):
expected_count = len(items_list)
for i in items_list:

items_db.add_item(i)
assert items_db.count() == expected_count

And fixtures can also use several other fixtures:

@pytest.fixture(scope="function")
def populated_db(items_db, items_list):

"""ItemsDB object populated with 'items_list'"""
for i in some_items:

items_db.add_item(i)
return items_db

The fixture populated_db must be in the function area, as it uses items_db, which is already in the function area.
If you try to place populated_db in the module area or a larger area, pytest will issue an error. Don’t forget that if
you don’t specify a range, you will get fixtures in the function area. Tests that require a populated database can now
simply do this with

def populated(populated_db):
assert populated_db.count() > 0

We have seen how different fixture scopes work and how different scopes can be used in different fixtures. However,
you may need to define a scope at runtime. This is possible with dynamic scoping.

16.5. pytest 181

Python basics, Release 24.1.0

Set fixture scope dynamically

Let’s assume we have set up the fixtures as they are now, with db in the session scope and items_db in the function
scope. However, there is now a risk that the items_db fixture is empty because it calls delete_all(). We therefore
want to create a way of setting up the database completely for each test function by dynamically defining the scope of
the db fixture at runtime. To do this, we first change the scope of db in the conftest.py file:

@pytest.fixture(scope=db_scope)
def db():

"""ItemsDB object connected to a temporary database"""
with TemporaryDirectory() as db_dir:

db_path = Path(db_dir)
db_ = items.ItemsDB(db_path)
yield db_
db_.close()

Instead of a specific scope, we have entered a function name: db_scope. Now we have to write this function:

def db_scope(fixture_name, config):
if config.getoption("--fdb", None):

return "function"
return "session"

There are many ways in which we can find out which area we should use. In this case, I decided to use a new command
line option --fdb. In order to use this new option with pytest, we need to write a hook function in the conftest.py
file, which I will explain in more detail in Plugins:

def pytest_addoption(parser):
parser.addoption(

"--fdb",
action="store_true",
default=False,
help="Create new db for each test",

)

After all this, the default behaviour is the same as before, with db in the session scope:

$ pytest --setup-show test_count.py
============================= test session starts ==============================
...
collected 3 items

test_count.py
SETUP S db

SETUP F items_db (fixtures used: db)
test_count.py::test_empty (fixtures used: db, items_db).
TEARDOWN F items_db
SETUP F items_db (fixtures used: db)
test_count.py::test_count (fixtures used: db, items_db).
TEARDOWN F items_db
SETUP F items_db (fixtures used: db)
test_count.py::test_count2 (fixtures used: db, items_db).
TEARDOWN F items_db

TEARDOWN S db
(continues on next page)

182 Chapter 16. Testing

Python basics, Release 24.1.0

(continued from previous page)

============================== 3 passed in 0.00s ===============================

However, if we use the new option, we get a db fixture in the function scope:

$ pytest --fdb --setup-show test_count.py
============================= test session starts ==============================
...
collected 3 items

test_count.py
SETUP F db
SETUP F items_db (fixtures used: db)
test_count.py::test_empty (fixtures used: db, items_db).
TEARDOWN F items_db
TEARDOWN F db
SETUP F db
SETUP F items_db (fixtures used: db)
test_count.py::test_count (fixtures used: db, items_db).
TEARDOWN F items_db
TEARDOWN F db
SETUP F db
SETUP F items_db (fixtures used: db)
test_count.py::test_count2 (fixtures used: db, items_db).
TEARDOWN F items_db
TEARDOWN F db

============================== 3 passed in 0.00s ===============================

The database is now set up before each test function and then dismantled again.

autouse for fixtures that are always used

Previously, all fixtures used by tests were named by the tests or another fixture in a parameter list. However, you can
use autouse=True to always run a fixture. This is good for code that needs to run at specific times, but tests are not
really dependent on a system state or data from the fixture, for example:

import os

@pytest.fixture(autouse=True, scope="session")
def setup_test_env():

found = os.environ.get("APP_ENV", "")
os.environ["APP_ENV"] = "TESTING"
yield
os.environ["APP_ENV"] = found

pytest --setup-show test_count.py
============================= test session starts ==============================
...
collected 3 items

(continues on next page)

16.5. pytest 183

Python basics, Release 24.1.0

(continued from previous page)

test_count.py
SETUP S setup_test_env
SETUP S db

SETUP F items_db (fixtures used: db)
test_count.py::test_empty (fixtures used: db, items_db, setup_test_env).
TEARDOWN F items_db
SETUP F items_db (fixtures used: db)
test_count.py::test_count (fixtures used: db, items_db, setup_test_env).
TEARDOWN F items_db
SETUP F items_db (fixtures used: db)
test_count.py::test_count2 (fixtures used: db, items_db, setup_test_env).
TEARDOWN F items_db

TEARDOWN S db
TEARDOWN S setup_test_env

============================== 3 passed in 0.00s ===============================

Tip: The autouse feature should be the exception rather than the rule. Opt for named fixtures unless you have a really
good reason not to do so.

Rename fixtures

The name of a fixture listed in the parameter list of tests and other fixtures that use this fixture is normally the same as
the function name of the fixture. However, Pytest allows you to rename fixtures with the name parameter to @pytest.
fixture():

import pytest

from items import cli
@pytest.fixture(scope="session", name="db")
def _db():

"""The db object"""
yield db()

def test_empty(db):
assert items_db.count() == 0

One case in which renaming can be useful is if the most obvious fixture name already exists as a variable or function
name.

184 Chapter 16. Testing

Python basics, Release 24.1.0

Built-in fixtures

Reusing common fixtures is such a good idea that pytest has built in some commonly used fixtures. The built-in fixtures
help you to do some very useful things in your tests easily and consistently. Among other things, pytest includes built-
in fixtures that can handle temporary directories and files, access command line options, communicate between test
sessions, validate output streams, change environment variables and query warnings.

tmp_path and tmp_path_factory

The tmp_path and tmp_path_factory fixtures are used to create temporary directories. The tmp_path fixture for the
function scope returns a pathlib.path instance that points to a temporary directory that persists during the test and
a little longer. The tmp_path_factory for a session scope fixture returns a TempPathFactory object. This object
has an mktemp() function that returns path objects. With mktemp() you can create multiple temporary directories.

In Test fixtures we have used the standard library tempfile.TemporaryDirectory for our db fixture:

from pathlib import Path
from tempfile import TemporaryDirectory

@pytest.fixture(scope="session")
def db():

"""ItemsDB object connected to a temporary database"""
with TemporaryDirectory() as db_dir:

db_path = Path(db_dir)
db_ = items.ItemsDB(db_path)
yield db_
db_.close()

Let’s use one of the new built-ins instead. Since our db fixture is in the session scope, we can’t use tmp_path because
session scope fixtures can’t use function scope fixtures. However, we can use tmp_path_factory:

@pytest.fixture(scope="session")
def db(tmp_path_factory):

"""ItemsDB object connected to a temporary database"""
db_path = tmp_path_factory.mktemp("items_db")
db_ = items.ItemsDB(db_path)
yield db_
db_.close()

Note: We can also remove two import statements because we don’t need to import pathlib or tempfile.

The base directory for all temporary pytest directories is system and application-dependent. It contains a pytest-NUM
part, where NUM is incremented for each session. The base directory is left unchanged immediately after a session
so that you can examine it in the case of test errors. pytest finally cleans them up. Only the last few temporary base
directories are left on the system.

You can also specify your own base directory with pytest --basetemp=MYDIR .

16.5. pytest 185

https://docs.pytest.org/en/latest/how-to/tmp_path.html#tmp-path
https://docs.pytest.org/en/latest/how-to/tmp_path.html#the-tmp-path-factory-fixture

Python basics, Release 24.1.0

capsys

Sometimes the application code should output something to stdout, stderr etc. The Items example project therefore
also has a command line interface, which we now want to test.

The items version command should output the version:

$ items version
0.1.0

The version is also available via Python:

>>> import items
>>> items.__version__
'0.1.0'

One way to test this is

1. execute the command with subprocess.run()

2. capture the output

3. compare it with the version from the API

import subprocess

import items

def test_version():
process = subprocess.run(["items", "version"], capture_output=True, text=True)
output = process.stdout.rstrip()
assert output == items.__version__

The rstrip() function is used to remove the line break.

The capsys fixture allows us to capture writes to stdout and stderr. We can call the method that implements this in
the CLI directly and use capsys to read the output:

import items

def test_version(capsys):
items.cli.version()
output = capsys.readouterr().out.rstrip()
assert output == items.__version__

The capsys.readouterr() method returns a namedtuple that contains out and err. We only read the out part
and then we remove the line break with rstrip().

Another feature of capsys is the ability to temporarily disable pytest’s normal output capture. pytest normally captures
the output of your tests and application code. This includes print statements.

import items

def test_stdout():
(continues on next page)

186 Chapter 16. Testing

https://docs.pytest.org/en/latest/reference/reference.html#capsys

Python basics, Release 24.1.0

(continued from previous page)

version = items.__version__
print("\nitems " + version)

However, when we run the test, we do not see any output:

$ pytest tests/test_output.py
============================= test session starts ==============================
...
collected 1 item

tests/test_output.py . [100%]

============================== 1 passed in 0.00s ===============================

pytest captures the entire output. While this helps to keep the command line session clean, there may be times when
we want to see the entire output, even if the test passes. For this we can use the -s or --capture=no option:

$ pytest -s tests/test_output.py
============================= test session starts ==============================
...
collected 1 item

tests/test_output.py
items 0.1.0
.

============================== 1 passed in 0.00s ===============================

Another way to always include the output is capsys.disabled():

import items

def test_stdout(capsys):
with capsys.disabled():

version = items.__version__
print("\nitems " + version)

Now the output is always displayed in the with block, even without the -s option:

$ pytest tests/test_output.py
============================= test session starts ==============================
...
collected 1 item

tests/test_output.py
items 0.1.0
. [100%]

============================== 1 passed in 0.00s ===============================

See also:
capfd

16.5. pytest 187

Python basics, Release 24.1.0

Like capsys, but captures file descriptors 1 and 2, which are normally the same as stdout and stderr

capsysbinary
While capsys captures text, capsysbinary captures bytes

capfdbinary
captures bytes in file descriptors 1 and 2

caplog
captures output written with the logging package

monkeypatch

With capsys I can control the stdout and stderr output just fine, but it’s still not the way I want to test the CLI.
The Items application uses a library called Typer, which contains a runner function to test our code the way we would
expect a command line test to, which stays in process and provides us with output hooks, for example:

from typer.testing import CliRunner

import items

def test_version():
runner = CliRunner()
result = runner.invoke(items.app, ["version"])
output = result.output.rstrip()
assert output == items.__version__

We will use this method of output testing as a starting point for the rest of the Items CLI tests. I started with the CLI
tests by testing the Items version. To test the rest of the CLI, we need to redirect the database to a temporary directory,
just like we did when testing the API using fixtures for setup and teardown. We now use monkeypatch for this:

A monkey patch is a dynamic change to a class or module during runtime. During testing, monkey patching is a
convenient way to take over part of the runtime environment of the application code and replace either input or output
dependencies with objects or functions that are more suitable for testing. With the built-in fixture monkeypatch you
can do this in the context of a single test. It is used to change objects, dicts, environment variables, PYTHONPATH or the
current directory. It’s like a mini version of mock. And when the test ends, regardless of whether it passes or fails, the
original, unpatched code is restored and everything that was changed by the patch is undone.

See also:
How to monkeypatch/mock modules and environments

The monkeypatch fixture offers the following functions:

Function Description
setattr(TARGET, NAME, VALUE, raising=True)1 sets an attribute
delattr(TARGET, NAME, raising=True)Page 189, 1 deletes an attribute
setitem(DICT, NAME, VALUE) sets a dict entry
delitem(DICT, NAME, raising=True)Page 189, 1 deletes a dict entry
setenv(NAME, VALUE, prepend=None)2 sets an environment variable
delenv(NAME, raising=True)Page 189, 1 deletes an environment variable
syspath_prepend(PATH) expands the path sys.path
chdir(PATH) changes the current working directory

188 Chapter 16. Testing

https://typer.tiangolo.com
https://docs.pytest.org/en/latest/reference/reference.html#monkeypatch
https://docs.pytest.org/en/latest/how-to/monkeypatch.html

Python basics, Release 24.1.0

We can use monkeypatch to redirect the CLI to a temporary directory for the database in two ways. Both methods
require knowledge of the application code. Let’s take a look at the method cli.get_path() in src/items/cli.py:

import os
import pathlib

def get_path():
db_path_env = os.getenv("ITEMS_DB_DIR", "")
if db_path_env:

db_path = pathlib.Path(db_path_env)
else:

db_path = pathlib.Path.home() / "items_db"
return db_path

This method tells the rest of the CLI code where the database is located. To display the location of the database on the
command line, we now also define config() in src/items/cli.py:

@app.command()
def config():

"""Return the path to the Items db."""
with items_db() as db:

print(db.path())

$ items config
/Users/veit/items_db

To test these methods, we can now patch either the entire get_path() function or the pathlib.Path() attribute
home. To do this, we first define an auxiliary function run_items_cli in tests/test_config.py, which outputs
the same as items on the command line:

from typer.testing import CliRunner

import items

def run_items_cli(*params):
runner = CliRunner()
result = runner.invoke(items.app, params)
return result.output.rstrip()

We can then write our test, which patches the entire get_path() function:

def test_get_path(monkeypatch, tmp_path):
def fake_get_path():

return tmp_path

monkeypatch.setattr(items.cli, "get_path", fake_get_path)
assert run_items_cli("config") == str(tmp_path)

The get_path() function from items.cli cannot simply be replaced by tmp_path, as this is a pathlib.Path

1 The raising parameter tells pytest whether an exception should be thrown if the element is not (yet) present.
2 The prepend parameter of setenv() can be a character. If it is set, the value of the environment variable is changed to VALUE + prepend

+ OLD_VALUE

16.5. pytest 189

Python basics, Release 24.1.0

object that cannot be called. It is therefore replaced by the fake_get_path() function. Alternatively, however, we
can also patch the home attribute of pathlib.Path:

def test_home(monkeypatch, tmp_path):
items_dir = tmp_path / "items_db"

def fake_home():
return tmp_path

monkeypatch.setattr(items.cli.pathlib.Path, "home", fake_home)
assert run_items_cli("config") == str(items_dir)

However, monkey patching and mocking complicate testing, so we will look for ways to avoid this whenever possible.
In our case, it might be useful to set an environment variable :envar:`ITEMS_DB_DIR` that can be easily patched:

def test_env_var(monkeypatch, tmp_path):
monkeypatch.setenv("ITEMS_DB_DIR", str(tmp_path))
assert run_items_cli("config") == str(tmp_path)

Remaining built-in fixtures

Built-in fixture Description
capfd, capfdbinary,
capsysbinary

Variants of capsys that work with file descriptors and/or binary output.

caplog similar to capsys; used for messages created with Python’s logging system.
cache is used to store and retrieve values across multiple Pytest runs.

It allows last-failed, failed-first and similar options.
doctest_namespace useful if you want to use pytest to perform doctests.
pytestconfig is used to get access to configuration values, plugin managers and hooks.
record_property,
record_testsuite_property

is used to add additional properties to the test or test suite.
Especially useful for adding data to a report used by CI (Continuous Integration) tools.

recwarn is used to test warning messages.
request is used to provide information about the executed test function.

is mostly used in the parameterisation of fixtures.
pytester, testdir Used to provide a temporary test directory to support the execution and testing of

pytest plugins. pytester is the pathlib based replacement for the py.path based
testdir.

tmpdir,
tmpdir_factory

similar to tmp_path and tmp_path_factory; used to return a py.path.local ob-
ject instead of a pathlib.Path object.

You can get the complete list of built-in fixtures by running pytest --fixtures.

See also:
• Built-in fixtures

190 Chapter 16. Testing

https://docs.pytest.org/en/latest/reference/fixtures.html#built-in-fixtures

Python basics, Release 24.1.0

Test parameterisation

Parameterisation allows us to convert a test function into many test cases in order to test more thoroughly with less
work. To do this, we pass multiple sets of arguments to the test to create new test cases. We’ll take a look at redundant
code that we can avoid with parameterisation. Then we’ll look at three options, in the order in which they should be
chosen:

• Parameterisation of functions

• Parameterisation of fixtures

• Using a hook function called pytest_generate_tests

We will solve the same parameterisation problem with all three methods, even if sometimes one solution is preferable
to the other.

Testing without parametrize

Sending some values through a function and checking the output for correctness is a common pattern when testing
software. However, calling a function once with a set of values is rarely sufficient to fully test the functions. Param-
eterised testing is a way to send multiple data sets through the same test and have pytest report if any of the data sets
fail. To understand the problem that parameterised tests are trying to solve, let’s write some tests for the finish()
API method from src/items/api.py:

def finish(self, item_id: int):
"""Set an item state to done."""
self.update_item(item_id, Item(state="done"))

The states used in the application are todo, in progress and done, and finish() sets the state of a card to done. To test
this, we could

1. create an Item object and add it to the database so we have a card to work with

2. call finish()

3. ensure that the final state is done.

One variable is the start state of the item. It could be “todo”, “in progress” or even already “done”. Let’s test all three:

from items import Item

def test_finish_from_in_prog(items_db):
index = items_db.add_item(Item("Update pytest section", state="in progress"))
items_db.finish(index)
item = items_db.get_item(index)
assert item.state == "done"

def test_finish_from_done(items_db):
index = items_db.add_item(Item("Update cibuildwheel section", state="done"))
items_db.finish(index)
item = items_db.get_item(index)
assert item.state == "done"

def test_finish_from_todo(items_db):
(continues on next page)

16.5. pytest 191

Python basics, Release 24.1.0

(continued from previous page)

index = items_db.add_item(Item("Update mock tests", state="todo"))
items_db.finish(index)
item = items_db.get_item(index)
assert item.state == "done"

Let’s let it go:

pytest -v tests/test_finish.py
============================= test session starts ==============================
...
collected 3 items

tests/test_finish.py::test_finish_from_in_prog PASSED [33%]
tests/test_finish.py::test_finish_from_done PASSED [66%]
tests/test_finish.py::test_finish_from_todo PASSED [100%]

============================== 3 passed in 0.00s ===============================

The test functions are very similar. The only differences are the initial state and the summary. One way to reduce the
redundant code is to combine the three functions into a single function, like this:

from items import Item

def test_finish(items_db):
for i in [

Item("Update pytest section", state="done"),
Item("Update cibuildwheel section", state="in progress"),
Item("Update mock tests", state="todo"),

]:
index = items_db.add_item(i)
items_db.finish(index)
item = items_db.get_item(index)
assert item.state == "done"

Now we run tests/test_finish.py again:

$ pytest -v tests/test_finish.py
============================= test session starts ==============================
...
collected 1 item

tests/test_finish.py::test_finish PASSED [100%]

============================== 1 passed in 0.00s ===============================

This test has also been passed and we have eliminated the superfluous code. But it’s not the same:

• Only one test case is reported instead of three.

• If one of the test cases fails, we don’t know which one it is without looking at the traceback or other debugging
information.

• If one of the test cases fails, the subsequent test cases are not executed. pytest stops the execution of a test if an
assertion fails.

192 Chapter 16. Testing

Python basics, Release 24.1.0

Parameterising functions

To parameterise a test function, add parameters to the test definition and use the @pytest.mark.parametrize()
decorator to define the arguments to be passed to the test, like this:

import pytest

from items import Item

@pytest.mark.parametrize(
"start_summary, start_state",
[

("Update pytest section", "done"),
("Update cibuildwheel section", "in progress"),
("Update mock tests", "todo"),

],
)
def test_finish(items_db, start_summary, start_state):

initial_item = Item(summary=start_summary, state=start_state)
index = items_db.add_item(initial_item)
items_db.finish(index)
item = items_db.get_item(index)
assert item.state == "done"

The test_finish() function now has its original items_db fixture as a parameter, but also two new parameters:
start_summary and start_state. These directly match the first argument of @pytest.mark.parametrize().

1. The first argument of @pytest.mark.parametrize() is a list of parameter names. This argument could
also be a list of strings, such as ["start_summary", "start_state"] or a comma-separated string
"start_summary, start_state".

2. The second argument of @pytest.mark.parametrize() is our list of test cases. Each element in the list is a
test case represented by a tuple or list containing one element for each argument sent to the test function.

pytest performs this test once for each (start_summary, start_state) pair and reports each as a separate test:

$ pytest -v tests/test_finish.py
============================= test session starts ==============================
...
collected 3 items

tests/test_finish.py::test_finish[Update pytest section-done] PASSED [33%]
tests/test_finish.py::test_finish[Update cibuildwheel section-in progress] PASSED [66%]
tests/test_finish.py::test_finish[Update mock tests-todo] PASSED [100%]

============================== 3 passed in 0.00s ===============================

This use of parametrize()works for our purposes. However, it is not really important for this test start_summary
and makes every test case more complex. Let’s change the parameterisation in start_state and see how the syntax
changes:

import pytest

from items import Item
(continues on next page)

16.5. pytest 193

Python basics, Release 24.1.0

(continued from previous page)

@pytest.mark.parametrize(
"start_state",
[

"done",
"in progress",
"todo",

],
)
def test_finish(items_db, start_state):

i = Item("Update pytest section", state=start_state)
index = items_db.add_item(i)
items_db.finish(index)
item = items_db.get_item(index)
assert item.state == "done"

When we run the tests now, they focus on the change that is important to us:

$ pytest -v tests/test_finish.py
============================= test session starts ==============================
...
collected 3 items

tests/test_finish.py::test_finish[done] PASSED [33%]
tests/test_finish.py::test_finish[in progress] PASSED [66%]
tests/test_finish.py::test_finish[todo] PASSED [100%]

============================== 3 passed in 0.01s ===============================

The output of the two examples differs in that now only the initial state is listed, namely todo, in progress and done.
In the previous example, pytest still displayed the values of both parameters, separated by a hyphen -. If only one
parameter changes, no hyphen is required.

Parameterising fixtures

During function parameterisation, pytest called our test function once for each set of arguments that we specified. With
fixture parameterisation, we move these parameters into a fixture. pytest then calls the fixture once for each set of
values we specify. Subsequently, each test function that depends on the fixture is called once for each fixture value.
The syntax is also different:

import pytest

from items import Item

@pytest.fixture(params=["done", "in progress", "todo"])
def start_state(request):

return request.param

(continues on next page)

194 Chapter 16. Testing

Python basics, Release 24.1.0

(continued from previous page)

def test_finish(items_db, start_state):
i = Item("Update pytest section", state=start_state)
index = items_db.add_item(i)
items_db.finish(index)
item = items_db.get_item(index)
assert item.state == "done"

This means that pytest calls start_state() three times, once for each of the values in params. Each value of params
is stored in request.param so that the fixture can use it. Within start_state() we could have code that depends
on the parameter value. In this case, however, only the value of the parameter is returned.

The function test_finish() is identical to the function we used in the function parameterisation, but without the
decorator parametrize. Since it has start_state as a parameter, pytest calls it once for each value that is passed to
the start_state() fixture. And after all this, the output looks exactly the same as before:

$ pytest -v tests/test_finish.py
============================= test session starts ==============================
...
collected 3 items

tests/test_finish.py::test_finish[done] PASSED [33%]
tests/test_finish.py::test_finish[in progress] PASSED [66%]
tests/test_finish.py::test_finish[todo] PASSED [100%]

============================== 3 passed in 0.01s ===============================

At first glance, fixture parameterisation fulfils roughly the same purpose as function parameterisation, but with a little
more code. However, fixture parameterisation has the advantage that a fixture is executed for each set of arguments.
This is useful if you have setup or teardown code that needs to be executed for each test case, for example a different
database connection or file content or whatever.

It also has the advantage that many test functions can be executed with the same set of parameters. All tests that use
the start_state fixture are called all three times, once for each start state.

Parameterise with pytest_generate_tests

The third option for parameterisation is to use a hook function called pytest_generate_tests. Hook functions
are often used by Plugins to change the normal workflow of pytest. But we can use many of them in test files and
conftest.py files.

The implementation of the same flow as before with pytest_generate_tests looks like this:

from items import Item

def pytest_generate_tests(metafunc):
if "start_state" in metafunc.fixturenames:

metafunc.parametrize("start_state", ["done", "in progress", "todo"])

def test_finish(items_db, start_state):
i = Item("Update pytest section", state=start_state)
index = items_db.add_item(i)

(continues on next page)

16.5. pytest 195

Python basics, Release 24.1.0

(continued from previous page)

items_db.finish(index)
item = items_db.get_item(index)
assert item.state == "done"

The test_finish() function has not changed; we have only changed the way pytest enters the value for
initial_state for each test call.

The pytest_generate_tests function that we provide is called by pytest when it generates its list of tests to run.
It is very powerful and our example is just a simple case of matching the functionality of previous parameterisation
methods. However, pytest_generate_tests is particularly useful if we want to change the parameterisation list at
test collection time in an interesting way. Here are a few possibilities:

• We could change our parameterisation list based on a command line option that metafunc.config.
getoption("--SOME_OPTION")1 gives us. Maybe we add an --excessive option to test more values, or
a --quick option to test only a few.

• The parameterisation list of a parameter can be based on the presence of another parameter. For example, for
test functions that query two related parameters, we can parameterise both with a different set of values than if
the test queries only one of the parameters.

• We can parameterise two related parameters at the same time, for example metafunc.
parametrize("TUTORIAL, TOPIC", [("PYTHON BASICS", "TESTING"), ("PYTHON BASICS",
"DOCUMENTING"), ("PYTHON FOR DATA SCIENCE, "GIT"), ...]).

We have now become familiar with three ways of parameterising tests. Although we only create three test cases from
one test function in the finish() example, parameterisation can generate a large number of test cases.

Markers

Markers in pytest can be thought of as tags or labels. If some tests are slow, you can mark them with @pytest.mark.
slow and have pytest skip those tests if you are in a hurry. You can select a handful of tests from a test suite and mark
them with @pytest.mark.smoke and run them as the first stage of a test pipeline in a CI system. You can really use
markers for any reason you have to run just a few tests.

pytest contains a handful of built-in markers that change the behaviour of the test execution. We have already used one
of these, @pytest.mark.parametrize, in Parameterising functions. In addition to the custom markers we can create
and add to our tests, the built-in markers tell pytest to do something special with the marked tests.

Below, we will explore both types of markers in more detail: the built-in markers that change behaviour and the custom
markers that we can create to select which tests to run. We can also use markers to pass information to a fixture that is
used by a test.

Using built-in markers

The pytest built-in markers are used to modify the test execution. Here is the complete list of built-in markers included
in pytest:

@pytest.mark.filterwarnings(WARNUNG)
This marker adds a warning filter to the specified test.

@pytest.mark.skip(reason=None)
This marker skips the test with an optional reason.

1 https://docs.pytest.org/en/latest/reference.html#metafunc

196 Chapter 16. Testing

https://docs.pytest.org/en/latest/reference.html#metafunc

Python basics, Release 24.1.0

@pytest.mark.skipif(BEDINGUNG, ...*, GRUND)
This marker skips the test if one of the conditions is True.

@pytest.mark.xfail(BEDINGUNG, ...* GRUND, run=True, raises=None, strict=xfail_strict)
This marker tells pytest that we expect the test to fail.

@pytest.mark.parametrize({ARG1, ARG2, ...
This marker calls a test function several times, passing different arguments one after the other.

@pytest.mark.usefixtures({FIXTURE1, FIXTURE2, ...
This marker identifies tests that require all the specified fixtures.

We have already used @pytest.mark.parametrize. Let’s go through the other three most commonly used built-in markers
with some examples to see how they work.

Skipping tests with @pytest.mark.skip

The skip marker allows us to skip a test. Let’s say we want to add the ability to sort in a future version of the Items
application and want the Item class to support comparisons. We write a test for comparing Item objects with < as
follows:

from items import Item

def test_less_than():
i1 = Item("Update pytest section")
i2 = Item("Update cibuildwheel section")
assert i1 < i2

def test_equality():
i1 = Item("Update pytest section")
i2 = Item("Update pytest section")
assert i1 == i2

And it fails:

pytest --tb=short tests/test_compare.py
============================= test session starts ==============================
...
collected 2 items

tests/test_compare.py F. [100%]

=================================== FAILURES ===================================
________________________________ test_less_than ________________________________
tests/test_compare.py:7: in test_less_than

assert i1 < i2
E TypeError: '<' not supported between instances of 'Item' and 'Item'
=========================== short test summary info ============================
FAILED tests/test_compare.py::test_less_than - TypeError: '<' not supported between␣
→˓instances of 'Item' and 'Item'
========================= 1 failed, 1 passed in 0.03s ==========================

16.5. pytest 197

Python basics, Release 24.1.0

The error is simply due to the fact that we have not yet implemented this function. However, we don’t have to throw
this test away again; we can simply omit it:

import pytest

from items import Item

@pytest.mark.skip(reason="Items do not yet allow a < comparison")
def test_less_than():

i1 = Item("Update pytest section")
i2 = Item("Update cibuildwheel section")
assert i1 < i2

The marker @pytest.mark.skip() instructs pytest to skip the test. Specifying a reason is optional, but it helps with
further development. When we execute skipped tests, they are displayed as s:

$ pytest --tb=short tests/test_compare.py
============================= test session starts ==============================
...
collected 2 items

tests/test_compare.py s. [100%]

========================= 1 passed, 1 skipped in 0.00s =========================

. . . or verbos as SKIPPED:

$ pytest -v -ra tests/test_compare.py
============================= test session starts ==============================
...
collected 2 items

tests/test_compare.py::test_less_than SKIPPED (Items do not yet allo...) [50%]
tests/test_compare.py::test_equality PASSED [100%]

=========================== short test summary info ============================
SKIPPED [1] tests/test_compare.py:6: Items do not yet allow a < comparison
========================= 1 passed, 1 skipped in 0.00s =========================

Since we have instructed pytest with -r to output a short summary of our tests, we get an additional line at the bottom
that lists the reason we specified in the marker. The a in -ra stands for all except passed. The -ra options are the most
common, as we almost always want to know why certain tests failed.

See also:
• Skipping test functions

198 Chapter 16. Testing

https://docs.pytest.org/en/latest/how-to/skipping.html#skipping-test-functions

Python basics, Release 24.1.0

Conditional skipping of tests with @pytest.mark.skipif

Suppose we know that we will not support sorting in versions 0.1.x of the Items app, but we will support it in version
0.2.x. Then we can instruct pytest to skip the test for all versions of items lower than 0.2.x as follows:

import pytest
from packaging.version import parse

import items
from items import Item

@pytest.mark.skipif(
parse(items.__version__).minor < 2,
reason="The comparison with < is not yet supported in version 0.1.x.",
)
def test_less_than():

i1 = Item("Update pytest section")
i2 = Item("Update cibuildwheel section")
assert i1 < i2

With the skipif marker, you can enter as many conditions as you like, and if one of them is true, the test is skipped.
In our case, we use packaging.version.parse to isolate the minor version and compare it with the number 2.

In this example, packaging is used as an additional package. If you want to try out the example, install it first with
python -m pip install packaging.

Tip: skipif is also ideal if tests need to be written differently for different operating systems.

See also:
• skipif

@pytest.mark.xfail

If we want to run all tests, even those that we know will fail, we can use the marker xfail or more precisely @pytest.
mark.xfail(CONDITION, ... *, {REASON, run=True, raises=None, strict=True). The first set of pa-
rameters for this fixture is the same as for skipif.

run
The test is executed by default, unless run=False is set.

raises
allows you to specify an exception type or a tuple of exception types that should result in an xfail. Any other
exception will cause the test to fail.

strict
tells pytest whether passed tests (strict=False) should be marked as XPASS or with strict=True as FAIL.

Let’s take a look at an example:

import pytest
from packaging.version import parse

(continues on next page)

16.5. pytest 199

https://pypi.org/project/packaging/
https://docs.pytest.org/en/latest/how-to/skipping.html#id1

Python basics, Release 24.1.0

(continued from previous page)

import items
from items import Item

@pytest.mark.xfail(
parse(items.__version__).minor < 2,
reason="The comparison with < is not yet supported in version 0.1.x.",
)
def test_less_than():

i1 = Item("Update pytest section")
i2 = Item("Update cibuildwheel section")
assert i1 < i2

@pytest.mark.xfail(reason="Feature #17: not implemented yet")
def test_xpass():

i1 = Item("Update pytest section")
i2 = Item("Update pytest section")
assert i1 == i2

@pytest.mark.xfail(reason="Feature #17: not implemented yet", strict=True)
def test_xfail_strict():

i1 = Item("Update pytest section")
i2 = Item("Update pytest section")
assert i1 == i2

We have three tests here: one that we know will fail, and two that we know will pass. These tests demonstrate both the
failing and passing of using xfail and the effects of using strict. The first example also uses the optional condition
parameter, which works like skipif’s conditions. And this is what the result looks like:

pytest -v -ra tests/test_xfail.py
============================= test session starts ==============================
...
collected 3 items

tests/test_xfail.py::test_less_than XFAIL (The comparison with < is ...) [33%]
tests/test_xfail.py::test_xpass XPASS (Feature #17: not implemented yet) [66%]
tests/test_xfail.py::test_xfail_strict FAILED [100%]

=================================== FAILURES ===================================
______________________________ test_xfail_strict _______________________________
[XPASS(strict)] Feature #17: not implemented yet
=========================== short test summary info ============================
XFAIL tests/test_xfail.py::test_less_than - The comparison with < is not yet supported␣
→˓in version 0.1.x.
XPASS tests/test_xfail.py::test_xpass Feature #17: not implemented yet
FAILED tests/test_xfail.py::test_xfail_strict
=================== 1 failed, 1 xfailed, 1 xpassed in 0.02s ====================

Tests labelled with xfail:

• Failed tests are displayed with XFAIL.

• Passed tests with strict=False result in XPASSED.

200 Chapter 16. Testing

Python basics, Release 24.1.0

• Passed tests with strict=True result in FAILED.

If a test fails that is marked with xfail, which means it is output with XFAIL, we were right in assuming that the test
will fail.

For tests that were marked xfail but actually passed, there are two possibilities: If they are supposed to result in XFAIL,
then you should keep your hands off strictly. If, on the other hand, they should result in FAILED, then set strict. You
can either set strict as an option for the xfail marker, as we have done in this example, or you can also set it globally
with the setting xfail_strict=True in the pytest configuration file pytest.ini.

A pragmatic reason to always use xfail_strict=True is that we usually take a closer look at all failed tests. And so
we also look at the cases in which the expectations of the test do not match the result.

xfail can be very helpful if you are working in test-driven development and you are writing test cases that you know
are not yet implemented but that you want to implement soon. Leave the xfail tests on the feature branch in which
the function is implemented.

Or something breaks, one or more tests fail, and you can’t work on fixing it right away. Marking the tests as xfail,
strict=true with the error/issue report ID in reason is a good way to keep the test running and not forget about it.

However, if you are just brainstorming about the behaviours of your application, you should not write tests and mark
them with xfail or skip yet: here I would recommend YAGNI (‘You Aren’t Gonna Need It’). Always implement
things only when they are actually needed and never when you only suspect that you will need them.

Tip:
• You should set xfail_strict = True in pytest.ini to turn all XPASSED results into FAILED.

• You should also always use -ra or at least -rxX to display the reason.

• And finally, you should specify an error number in reason.

• pytest --runxfail basically ignores the xfail markers. This is very useful in the final stages of pre-
production testing.

Selection of tests with your own markers

You can think of your own markers as tags or labels. They can be used to select tests that should be executed or skipped.

Let’s say we want to label some of our tests with smoke. Segmenting a subset of tests into a smoke test suite is a
common practice to be able to run a representative set of tests that can quickly tell us if anything is wrong with any
of the main systems. In addition, we will label some of our tests with exception – those that check for expected
exceptions:

import pytest

from items import InvalidItemId, Item

@pytest.mark.smoke
def test_start(items_db):

"""
Change state from ‘todo’ to ‘in progress’
"""
i = items_db.add_item(Item("Update pytest section", state="todo"))
items_db.start(i)

(continues on next page)

16.5. pytest 201

Python basics, Release 24.1.0

(continued from previous page)

s = items_db.get_item(i)
assert s.state == "in progress"

Now we should be able to select only this test by using the -m smoke option:

$ pytest -v -m smoke tests/test_start.py
============================= test session starts ==============================
...
collected 2 items / 1 deselected / 1 selected

tests/test_start.py::test_start PASSED [100%]

=============================== warnings summary ===============================
tests/test_start.py:6
/Users/veit/items/tests/test_start.py:6: PytestUnknownMarkWarning: Unknown pytest.mark.

→˓smoke - is this a typo? You can register custom marks to avoid this warning - for␣
→˓details, see https://docs.pytest.org/en/stable/how-to/mark.html

@pytest.mark.smoke

-- Docs: https://docs.pytest.org/en/stable/how-to/capture-warnings.html
================== 1 passed, 1 deselected, 1 warning in 0.00s ==================

Now we were only able to run one test, but we also received a warning: PytestUnknownMarkWarning: Unknown
pytest.mark.smoke - is this a typo? It helps to avoid typos. pytest wants us to register custom markers by
adding a marker section to pytest.ini, for example:

[pytest]
markers =

smoke: Small subset of all tests

Now pytest no longer warns us of an unknown marker:

$ pytest -v -m smoke tests/test_start.py
============================= test session starts ==============================
...
configfile: pytest.ini
collected 2 items / 1 deselected / 1 selected

tests/test_start.py::test_start PASSED [100%]

======================= 1 passed, 1 deselected in 0.00s ========================

Let’s do the same with the exception marker for test_start_non_existent.

1. First, we register the marker in pytest.ini:

[pytest]
markers =

smoke: Small subset of tests
exception: Only run expected exceptions

2. Then we add the marker to the test:

202 Chapter 16. Testing

Python basics, Release 24.1.0

@pytest.mark.exception
def test_start_non_existent(items_db):

"""
Shouldn’t start a non-existent item.
"""
any_number will be invalid, db is empty
any_number = 44

with pytest.raises(InvalidItemId):
items_db.start(any_number)

3. Finally, we run the test with -m exception:

$ pytest -v -m exception tests/test_start.py
============================= test session starts ==============================
...
configfile: pytest.ini
collected 2 items / 1 deselected / 1 selected

tests/test_start.py::test_start_non_existent PASSED [100%]

======================= 1 passed, 1 deselected in 0.01s ========================

Markers for files, classes and parameters

With the tests in test_start.py, we have added @pytest.mark.MARKER_NAME decorators to test functions. We can
also add markers to entire files or classes to mark multiple tests, or go into parameterised tests and mark individual
parameterisations. We can even set multiple markers on a single test. First, we set in test_finish.pywith a file-level
marker:

import pytest

from items import Item

pytestmark = pytest.mark.finish

If pytest sees a pytestmark attribute in a test module, it will apply the marker(s) to all tests in that module. If you
want to apply more than one marker to the file, you can use a list form: pytestmark = [pytest.mark.MARKER_ONE,
pytest.mark.MARKER_TWO].

Another way to mark multiple tests at the same time is to have tests in a class and use markers at class level:

@pytest.mark.smoke
class TestFinish:

def test_finish_from_todo(self, items_db):
i = items_db.add_item(Item("Update pytest section", state="todo"))
items_db.finish(i)
s = items_db.get_item(i)
assert s.state == "done"

def test_finish_from_in_prog(self, items_db):
i = items_db.add_item(Item("Update pytest section", state="in progress"))

(continues on next page)

16.5. pytest 203

Python basics, Release 24.1.0

(continued from previous page)

items_db.finish(i)
s = items_db.get_item(i)
assert s.state == "done"

def test_finish_from_done(self, items_db):
i = items_db.add_item(Item("Update pytest section", state="done"))
items_db.finish(i)
s = items_db.get_item(i)
assert s.state == "done"

The test class TestFinish is labelled with @pytest.mark.smoke. If you mark a test class in this way, every test
method in the class will be labelled with the same marker.

We can also mark only certain test cases of a parameterised test:

@pytest.mark.parametrize(
"states",
[

"todo",
pytest.param("in progress", marks=pytest.mark.smoke),
"done",

],
)
def test_finish(items_db, start_state):

i = items_db.add_item(Item("Update pytest section", state=states))
items_db.finish(i)
s = items_db.get_item(i)
assert s.state == "done"

The test_finish() function is not directly marked, but only one of its parameters: pytest.param("in
progress", marks=pytest.mark.smoke). You can use more than one marker by using the list form:
marks=[pytest.mark.ONE, pytest.mark.TWO]. If you want to mark all test cases of a parameterised test, insert
the marker either above or below the decorator parametrize, as with a normal function.

The previous example referred to function parameterisation. However, you can also mark fixtures in the same way:

@pytest.fixture(
params=[

"todo",
pytest.param("in progress", marks=pytest.mark.smoke),
"done",

]
)
def start_state_fixture(request):

return request.param

def test_finish(items_db, start_state_fixture):
i = items_db.add_item(Item("Update pytest section", state=start_state_fixture))
items_db.finish(i)
s = items_db.get_item(i)
assert s.state == "done"

If you want to add more than one marker to a function, you can simply stack them. For example,

204 Chapter 16. Testing

Python basics, Release 24.1.0

test_finish_non_existent() is marked with both @pytest.mark.smoke and @pytest.mark.exception:

from items import InvalidItemId, Item

@pytest.mark.smoke
@pytest.mark.exception
def test_finish_non_existent(items_db):

i = 44 # any_number will be invalid, db is empty
with pytest.raises(InvalidItemId):

items_db.finish(i)

We have added a number of markers to test_finish.py in various ways. We use the markers to select the tests to be
executed instead of a test file:

$ cd tests
$ tests % pytest -v -m exception
============================= test session starts ==============================
...
configfile: pytest.ini
collected 36 items / 34 deselected / 2 selected

test_finish.py::test_finish_non_existent PASSED [50%]
test_start.py::test_start_non_existent PASSED [100%]

======================= 2 passed, 34 deselected in 0.07s =======================

Markers together with and, or, not and ()

We can logically combine markers to select tests, just like we used -k together with keywords to select test cases in a
test suite. So we can only select the finish tests that deal with exception:

pytest -v -m "finish and exception"
============================= test session starts ==============================
...
configfile: pytest.ini
collected 36 items / 35 deselected / 1 selected

test_finish.py::test_finish_non_existent PASSED [100%]

======================= 1 passed, 35 deselected in 0.08s =======================

We can also use all logical operations together:

$ pytest -v -m "(exception or smoke) and (not finish)"
============================= test session starts ==============================
...
configfile: pytest.ini
collected 36 items / 34 deselected / 2 selected

test_start.py::test_start PASSED [50%]
test_start.py::test_start_non_existent PASSED [100%]

(continues on next page)

16.5. pytest 205

Python basics, Release 24.1.0

(continued from previous page)

======================= 2 passed, 34 deselected in 0.08s =======================

Finally, we can also combine markers and keywords for the selection, for example, to perform smoke tests that are not
part of the TestFinish class:

$ pytest -v -m smoke -k "not TestFinish"
============================= test session starts ==============================
...
configfile: pytest.ini
collected 36 items / 33 deselected / 3 selected

test_finish.py::test_finish[in progress] PASSED [33%]
test_finish.py::test_finish_non_existent PASSED [66%]
test_start.py::test_start PASSED [100%]

======================= 3 passed, 33 deselected in 0.07s =======================

When using markers and keywords, please note that the names of the markers must be complete with the -m
MARKERNAME option, while keywords are more of a substring with the -k KEYWORD option.

--strict-markers

Usually we get a warning if a marker is not registered. If we want this warning to be an error instead, we can use the
--strict-markers option. This has two advantages:

1. The error is already output when the tests to be executed are collected and not at runtime. If you have a test suite
that takes longer than a few seconds, you will appreciate getting this feedback quickly.

2. Secondly, errors are sometimes easier to recognise than warnings, especially in systems with continuous inte-
gration.

Tip: It is therefore recommended to always use --strict-markers. However, instead of entering the option again
and again, you can add --strict-markers to the addopts section of pytest.ini:

[pytest]
...
addopts =

--strict-markers

Combining markers with fixtures

Markers can be used in conjunction with fixtures, plugins and hook functions. The built-in markers require parameters,
while the custom markers we have used so far do not require parameters. Let’s create a new marker called num_items
that we can pass to the items_db fixture. The items_db fixture currently cleans up the database for each test that
wants to use it:

@pytest.fixture(scope="function")
def items_db(session_items_db):
db = session_items_db

(continues on next page)

206 Chapter 16. Testing

Python basics, Release 24.1.0

(continued from previous page)

db.delete_all()
return db

For example, if we want to have four items in the database when our test starts, we can simply write a different but
similar fixture:

@pytest.fixture(scope="session")
def items_list():

"""List of different Item objects"""
return [

items.Item("Add Python 3.12 static type improvements", "veit", "todo"),
items.Item("Add tips for efficient testing", "veit", "wip"),
items.Item("Update cibuildwheel section", "veit", "done"),
items.Item("Add backend examples", "veit", "done"),

]

@pytest.fixture(scope="function")
def populated_db(items_db, items_list):

"""ItemsDB object populated with 'items_list'"""
for i in items_list:

items_db.add_item(i)
return items_db

We could then use the original fixture for tests, which provides an empty database, and the new fixture for tests, which
contains a database with four items:

def test_zero_item(items_db):
assert items_db.count() == 0

def test_four_items(populated_db):
assert populated_db.count() == 4

We now have the option of testing either zero or four items in the database. But what if we want to have no, four or 13
items? Then we don’t want to write a new fixture each time. Markers allow us to tell a test how many items we want
to have. This requires three steps:

1. First, we define three different tests in test_items.py with our marker @pytest.mark.num_items:

@pytest.mark.num_items
def test_zero_item(items_db):

assert items_db.count() == 0

@pytest.mark.num_items(4)
def test_four_items(items_db):

assert items_db.count() == 4

@pytest.mark.num_items(13)
def test_thirteen_items(items_db):

assert items_db.count() == 13

16.5. pytest 207

Python basics, Release 24.1.0

2. We must then declare this marker in the pytest.ini file:

[pytest]
markers =

...
num_items: Number of items to be pre-filled for the items_db fixture

3. Now we modify the items_db fixture in the conftest.py file to be able to use the marker. To avoid having
to hard-code the item information, we will use the Python package Faker, which we can install with python -m
pip install faker:

1 import os
2 from pathlib import Path
3 from tempfile import TemporaryDirectory
4

5 import faker
6 import pytest
7

8 import items
9

10 ...
11

12 @pytest.fixture(scope="function")
13 def items_db(session_items_db, request, faker):
14 db = session_items_db
15 db.delete_all()
16 # Support for random selection "@pytest.mark.num_items({NUMBER})`.
17 faker.seed_instance(99)
18 m = request.node.get_closest_marker("num_items")
19 if m and len(m.args) > 0:
20 num_items = m.args[0]
21 for _ in range(num_items):
22 db.add_item(Item(summary=faker.sentence(), owner=faker.first_name()))
23 return db

There are a lot of changes here that we want to go through now.

Line 13
We have added request and faker to the list of items_db parameters.

Line 17
This sets the randomness of faker so that we get the same data every time. We are not using faker here for
very random data, but to avoid having to invent data ourselves.

Line 18
Here we use request, more precisely request.node for the pytest representation of a test.
get_closest_marker('num_items') returns a marker object if the test is marked with num_items,
otherwise it returns None. The get_closest_marker() function returns the marker closest to the test,
which is usually what we want.

Line 19
The expression is true if the test is marked with num_items and an argument is given. The additional len
check is there so that if someone accidentally just uses pytest.mark.num_items without specifying the
number of items, this part is skipped.

Line 20–22
Once we know how many items we need to create, we let Faker create some data for us. Faker provides the

208 Chapter 16. Testing

https://faker.readthedocs.io/

Python basics, Release 24.1.0

Faker fixture.

• For the summary field, the faker.sentence() method works.

• The faker.first_name() method works for the Owner field.

See also:
• There are many other options that you can use with Faker. Have a look at the Faker documentation.

• In addition to Faker, there are other libraries that provide fake data, see Fake plugins.

Let’s run the tests now to make sure everything is working properly:

$ pytest -v -s test_items.py
============================= test session starts ==============================
...
configfile: pytest.ini
plugins: Faker-19.10.0
collected 3 items

test_items.py::test_zero_item PASSED
test_items.py::test_four_items PASSED
test_items.py::test_thirteen_items PASSED

============================== 3 passed in 0.09s ===============================

Note: You can add a print statement to test_four_items() to get an impression of what the data from Faker looks
like:

@pytest.mark.num_items(4)
def test_four_items(items_db):

assert items_db.count() == 4
print()
for i in items_db.list_items():

print(i)

You can then call the tests in test_items.py again:

$ pytest -v -s test_items.py
============================= test session starts ==============================
...
configfile: pytest.ini
plugins: Faker-19.10.0
collected 3 items

test_items.py::test_zero_item PASSED
test_items.py::test_four_items
Item(summary='Herself outside discover card beautiful rock.', owner='Alyssa', state='todo
→˓', id=1)
Item(summary='Bed perhaps current reveal open society small.', owner='Lynn', state='todo
→˓', id=2)
Item(summary='Charge produce sure full water.', owner='Allison', state='todo', id=3)
Item(summary='Light I especially account.', owner='James', state='todo', id=4)
PASSED
test_items.py::test_thirteen_items PASSED

(continues on next page)

16.5. pytest 209

https://faker.readthedocs.io/

Python basics, Release 24.1.0

(continued from previous page)

============================== 3 passed in 0.09s ===============================

List markers

We’ve already covered a lot of markers: the built-in markers skip, skipif and xfail, our own markers smoke,
exception, finish and num_items and there are also a few more built-in markers. And when we start using Plugins,
more markers may be added. To list all available markers with descriptions and parameters, you can run pytest
--markers:

$ pytest --markers
@pytest.mark.exception: Only run expected exceptions

@pytest.mark.finish: Only run finish tests

@pytest.mark.smoke: Small subset of all tests

@pytest.mark.num_items: Number of items to be pre-filled for the items_db fixture

@pytest.mark.filterwarnings(warning): add a warning filter to the given test. see https:/
→˓/docs.pytest.org/en/stable/how-to/capture-warnings.html#pytest-mark-filterwarnings
...

This is a very handy feature that allows us to quickly search for markers and a good reason to add useful descriptions
to our own markers.

Plugins

As powerful as pytest is, it can do even more when we add plugins. The pytest codebase is designed to allow customi-
sation and extensions, and there are hooks that allow changes and improvements through plugins.

You may be surprised to find that you have already written some plugins if you have worked through the previous
sections. Every time you add fixtures or hook functions to a project’s conftest.py file, you are creating a local
plugin. It’s just a little extra work to turn these conftest.py files into installable plugins that you can share between
projects, with other people, or with the world.

But first, let’s start with where you can find third-party plugins. There are quite a few plugins out there, so there’s a
good chance that any changes you want to make to pytest have already been written.

Finding plugins

You can find third-party pytest plugins in various places, for example the pytest documentation contains an alphabetical
list of plugins from pypi.org. You can also search pypi.org itself, for pytest or for the pytest framework. Finally, many
popular pytest plugins can also be found in pytest-dev on GitHub.

210 Chapter 16. Testing

https://docs.pytest.org/en/latest/reference/plugin_list.html
https://pypi.org/search/?q=pytest
https://pypi.org/search/?q=&c=Framework+%3A%3A+Pytest
https://github.com/pytest-dev

Python basics, Release 24.1.0

Installing plugins

Like other Python packages, pytest plugins can be easily installed with pip: python -m pip install pytest-cov.

Plugins for . . .

. . . modified test sequences

pytest usually executes our tests in a predictable order. For a directory of test files, pytest executes each file in alphabet-
ical order. Within each file, each test is executed in the order in which it appears in the file. However, it can sometimes
be useful to change this order. The following plugins change the usual sequence of a test:

pytest-xdist
executes tests in parallel, either with several CPUs on one machine or several remote machines.

pytest-rerunfailures
re-executes failed tests and is particularly helpful in the case of faulty tests.

pytest-repeat
makes it easy to repeat one or more tests.

pytest-order
enables the order to be defined using Markers.

pytest-randomly
runs the tests in random order, first by file, then by class, then by test file.

. . . modified output

The normal pytest output mainly shows dots for passed tests and characters for other output. If you pass -v, you will
see a list of test names with the result. However, there are plugins that change the output even further:

pytest-instafail
adds a --instafail option that reports tracebacks and output from failed tests immediately after the failure.
Normally, pytest reports tracebacks and output from failed tests only after all tests have completed.

pytest-sugar
shows green checkmarks instead of dots for passed tests and has a nice progress bar. Like pytest-instafail, it also
shows failures immediately.

pytest-html
enables the creation of HTML reports. Reports can be extended with additional data and images, such as screen-
shots of error cases.

pytest-icdiff
improves diffs in the error messages of the pytest assertion with ICDiff.

16.5. pytest 211

https://pypi.org/project/pytest-xdist/
https://pypi.org/project/pytest-rerunfailures/
https://pypi.org/project/pytest-repeat/
https://pypi.org/project/pytest-order/
https://pypi.org/project/pytest-randomly/
https://pypi.org/project/pytest-instafail/
https://pypi.org/project/pytest-sugar/
https://pypi.org/project/pytest-html/
https://pypi.org/project/pytest-icdiff/
https://www.jefftk.com/icdiff

Python basics, Release 24.1.0

. . . web development

pytest is used extensively for testing web projects and there is a long list of plugins that further simplify testing:

pytest-selenium
provides fixtures that enable simple configuration of browser-based tests with Selenium.

pytest-splinter
provide the high-level API of the Selenium-based Splinter to be used more easily from pytest.

pytest-httpx
facilitates the testing of HTTPX and FastAPI applications.

. . . fake data

We have already used Faker in Combining markers with fixtures to create multiple item instances. There are many cases
in different areas where it is helpful to generate fake data. It is therefore not surprising that there are several plugins
that fulfil this need:

Faker
generates fake data for you and offers a faker fixture for use with pytest.

pytest-factoryboy
contains fixtures for factory-boy, a database model data generator.

pytest-mimesis
generates fake data similar to Faker, but Mimesis is a lot faster.

. . . various things

pytest-cov
executes the Coverage during testing.

pytest-benchmark
performs benchmark timing for code within tests.

pytest-timeout
prevents tests from running too long.

pytest-asyncio
tests asynchronous functions.

pytest-mock
is a thin wrapper around the unittest.mock patching API.

pytest-freezegun
freezes the time so that any code that reads the time, date or clock time will get the same value during a test. set
a specific time.

pytest-grpc
is a Pytest plugin for gRPC.

pytest-bdd
writes BDD (Behavior Driven Development) tests with pytest.

212 Chapter 16. Testing

https://pypi.org/project/pytest-selenium/
https://www.selenium.dev
https://pypi.org/project/pytest-splinter/
https://pypi.org/project/splinter/
https://pypi.org/project/pytest-httpx/
https://www.python-httpx.org
https://fastapi.tiangolo.com
https://pypi.org/project/Faker/
https://pypi.org/project/Faker/
https://pypi.org/project/pytest-factoryboy/
https://pypi.org/project/factory-boy/
https://pypi.org/project/pytest-mimesis/
https://pypi.org/project/mimesis/
https://pypi.org/project/pytest-cov/
https://pypi.org/project/pytest-benchmark/
https://pypi.org/project/pytest-timeout/
https://pypi.org/project/pytest-asyncio/
https://pypi.org/project/pytest-mock/
https://pypi.org/project/pytest-freezegun/
https://www.python4data.science/en/latest/data-processing/apis/grpc/test.html
https://www.python4data.science/en/latest/data-processing/apis/grpc/index.html
https://pypi.org/project/pytest-bdd/

Python basics, Release 24.1.0

Own plugins

See also:
• Writing plugins

Configuration

You can use configuration files to change the way pytest runs. If you repeatedly use certain options in your tests, such
as --verbose or --strict-markers, you can store them in a configuration file so that you don’t have to enter them
again and again. In addition to the configuration files, there are a handful of other files that are helpful when using
pytest to make writing and running tests easier:

pytest.ini
This is the most important configuration file of pytest, with which you can change the default behaviour of pytest.
It also defines the root directory of pytest, or rootdir.

conftest.py
This file contains Test fixtures and hook functions. It can exist in rootdir or in any subdirectory.

__init__.py
If this file is stored in test subdirectories, it enables the use of identical test file names in several test directories.

If you already have a tox.ini, pyproject.toml or setup.cfg in your project, they can take the place of the pytest.
ini file: tox.ini is used by tox, pyproject.toml and setup.cfg are used for packaging Python projects and can
be used to store settings for various tools, including pytest.

You should have a configuration file, either pytest.ini, or a pytest section in tox.ini, pyproject.toml or in
setup.cfg.

The configuration file defines the top-level directory from which pytest is started.

Let’s take a look at some of these files in the context of a project directory structure:

items
...
pytest.ini
src

...
tests

__init__.py
conftest.py
test_....py

In the case of the items project that we have used for testing so far, there is a pytest.ini file and a tests directory
at the top level. We will refer to this structure when we talk about the various files in the rest of this section.

16.5. pytest 213

https://docs.pytest.org/en/latest/how-to/writing_plugins.html

Python basics, Release 24.1.0

Saving settings and options in pytest.ini

[pytest]
addopts =

--strict-markers
--strict-config
-ra

testpaths = tests
markers =

smoke: Small subset of all tests
exception: Only run expected exceptions

[pytest] marks the start of the pytest section. This is followed by the individual settings. For configuration settings
that allow more than one value, the values can be written either in one or more lines in the form SETTING = VALUE1
VALUE2. With markers, however, only one marker per line is permitted.

This example is a simple pytest.ini file that I use in almost all my projects. Let’s briefly go through the individual
lines:

addopts =
allows you to specify the pytest options that we always want to execute in this project.

--strict-markers
instructs pytest to issue an error instead of a warning for every unregistered marker that appears in the test code.
This allows us to avoid typos in marker names.

--strict-config
instructs pytest to issue an error instead of a warning if difficulties arise when parsing configuration files. This
prevents typing errors in the configuration file from going unnoticed.

-ra
instructs pytest to display not only additional information on failures and errors at the end of a test run, but also
a test summary.

-r
displays additional information on the test summary.

a
displays all but the passed tests. This adds the information skipped, xfailed or xpassed to the failures
and errors.

testpaths = tests
tells pytest where to look for tests if you have not specified a file or directory name on the command line. In our
case, pytest searches in the tests directory.

At first glance, it may seem superfluous to set testpaths to tests, as pytest searches there anyway and we do
not have any test_ files in our src or docs directories. However, specifying a testpaths directory can save
a little startup time, especially if our src, docs or other directories are quite large.

markers =
is used to declare markers, as described in Selection of tests with your own markers.

See also:
You can specify many other configuration settings and command line options in the configuration files, which you can
display using the pytest --help command.

214 Chapter 16. Testing

Python basics, Release 24.1.0

Using other configuration files

If you are writing tests for a project that already has a pyproject.toml, tox.ini or setup.cfg file, you can use
pytest.ini to store your pytest configuration settings, or you can store your configuration settings in one of these
alternative configuration files. The syntax of the two non-ini files is slightly different, so we will take a closer look at
both files.

pyproject.toml

The pyproject.toml file was originally intended for the packaging of Python projects; however, it can also be used
to define project settings.

As TOML is a different standard for configuration files than .ini files, the format is also slightly different:

[tool.pytest.ini_options]
addopts = [

"--strict-markers",
"--strict-config",
"-ra"
]

testpaths = "tests"
markers = [

"exception: Only run expected exceptions",
"finish: Only run finish tests",
"smoke: Small subset of all tests",
"num_items: Number of items to be pre-filled for the items_db fixture"
]

Instead of [pytest], the section begins with [tool.pytest.ini_options], the values must be enclosed in quotes
and lists of values must be lists of character strings in square brackets.

setup.cfg

The file format of the setup.cfg corresponds to an .ini file:

[tool:pytest]
addopts =

--strict-markers
--strict-config
-ra

testpaths = tests
markers =

smoke: Small subset of all tests
exception: Only run expected exceptions

The only difference between this and pytest.ini is the specification of the [tool:pytest] section.

Warning: However, the parser of the .cfg file differs from the parser of the .ini file, and this difference can
cause problems that are difficult to track down, see also pytest documentation.

16.5. pytest 215

https://www.python4data.science/en/latest/data-processing/serialisation-formats/toml/index.html
https://docs.pytest.org/en/latest/reference/customize.html#setup-cfg

Python basics, Release 24.1.0

Set rootdir

Before pytest searches for test files to execute, it reads the configuration file pytest.ini, tox.ini, pyproject.toml
or setup.cfg, which contains a pytest section:

• if you have specified a test directory, pytest will start searching there

• if you have specified several files or directories, pytest starts with the parent directory

• if you do not specify a file or directory, pytest starts in the current directory.

If pytest finds a configuration file in the start directory, this is the root and if not, pytest goes up the directory tree until it
finds a configuration file that contains a pytest section. Once pytest has found a configuration file, it marks the directory
in which it found it as rootdir. This root directory is also the relative root of the IDs. pytest also tells you where it
has found a configuration file. Using these rules, we can run tests at different levels and be sure that pytest finds the
correct configuration file:

$ cd items
$ pytest
============================= test session starts ==============================
...
rootdir: /Users/veit/cusy/prj/items
configfile: pyproject.toml
testpaths: tests
plugins: Faker-19.11.0
collected 39 items
...

conftest.py for sharing local fixtures and hook functions

The conftest.py file is used to store fixtures and hook functions, see also Test fixtures and Plugins. You can have
as many conftest.py files in a project as you like. Everything that is defined in a conftest.py file applies to tests
in this directory and all subdirectories. If you have a conftest.py file at the top test level, the fixtures defined there
can be used for all tests. If there are special fixtures that only apply to a subdirectory, these can be defined in another
conftest.py file in this subdirectory. For example, the CLI tests may require different fixtures than the API tests, and
you can also share some of them.

Tip: However, it is a good idea to keep only one conftest.py file so that you can easily find the fixture definitions.
Even though we can always find out where a fixture is defined with pytest --fixtures -v, it is still easier if it is
always defined in the one conftest.py file.

__init__.py to avoid collision of test file names

The __init__.py file allows you to have duplicate test filenames. If you have __init__.py files in each test subdi-
rectory, you can use the same test filename in multiple directories, for example:

items
...
pytest.ini
src

...
(continues on next page)

216 Chapter 16. Testing

Python basics, Release 24.1.0

(continued from previous page)

tests
api

__init__.py
test_add.py

cli
__init__.py
conftest.py
test_add.py

conftest.py

Now we can test the add functionality both via the API and via the CLI, whereby a test_add.py is located in both
directories:

$ pytest
============================= test session starts ==============================
...
rootdir: /Users/veit/cusy/prj/items
configfile: pyproject.toml
testpaths: tests
plugins: Faker-19.11.0
collected 6 items

tests/api/test_add.py [66%]
tests/cli/test_add.py .. [100%]

============================== 6 passed in 0.03s ===============================

Most of my projects start with the following configuration:

addopts =
--strict-markers
--strict-config
-ra

See also:
• Configuration

• Configuration Options

Debugging test failures

When tests fail, we need to find out why. Maybe it’s the test, or maybe it’s the application. The process of finding out
where the problem is and what to do about it is similar.

pytest offers many tools that can help us solve a problem faster without having to run a debugger. Python includes a
built-in source code debugger called pdb, as well as several options that make debugging with pdb quick and easy.

Below we will debug some broken code using pytest options and pdb, looking at the debugging options and integration
of pytest and pdb.

16.5. pytest 217

https://docs.pytest.org/en/latest/reference/customize.html
https://docs.pytest.org/en/latest/reference/reference.html#configuration-options

Python basics, Release 24.1.0

Debugging with pytest options

pytest contains a whole range of command line options that are useful for debugging. We will use some of them to fix
our test errors. Options for selecting which tests to run, in what order, and when to stop them.

In all of these descriptions, the term error refers to a failed assertion or other uncaught exception found in our
source or test code, including fixtures.

1. Re-execution of failed tests

Let’s start debugging by making sure that the tests fail when we re-execute them. To do this, we use --lf to
re-execute only the failed tests and --tb=no to hide the traceback. This way we know that we can reproduce the
error.

1. Now we can start debugging the first error by running the first failed test, stopping after the error and looking
at the traceback: pytest --lf -x.

2. To make sure we understand the problem, we can run the same test again with -l/--showlocals. We don’t
need the full traceback again, so we can shorten it with --tb=short: pytest --lf -x -l --tb=short.

-l/--showlocals are often very helpful and sometimes good enough to recognise a test error completely.

2. Debugging with pdb

pdb (Python Debugger) is part of the Python standard library, so we don’t need to install anything to use it. You
can start pdb from pytest in several ways:

• add a breakpoint() call to either the test or application code. When a pytest run encounters a
breakpoint() function call, it will stop there and start pdb.

• use the --pdb option. With --pdb, pytest will stop at the point of failure.

• uses the combination of the --lf and --trace options. With --trace pytest stops at the beginning of
each test.

The common commands recognised by pdb are listed below:

218 Chapter 16. Testing

Python basics, Release 24.1.0

Options Description
Meta commands
h(elp) outputs a list of commands.
h(elp)
COMMAND

outputs the help for a command.

q(uit) terminates pdb.
See where you are
l(ist) lists eleven lines around the current line; when called again, the next eleven lines are

listed.
l(ist) . The same as above, but with a dot. Lists eleven lines around the current line. Useful if

you have used l(list) a few times and have lost your current position.
l(ist)
first|last

lists a specific group of lines.

ll lists the entire source code for the current function.
w(here) outputs the stack trace.
View values
p(rint)
EXPR

evaluates EXPR and outputs the value.

pp EXPR corresponds to p(rint) EXPR , but uses pretty-print from the pprint module.
a(rgs) outputs the argument list of the current function.
Execution commands
s(tep) executes the current line and jumps to the next line in your source code, even if it is inside

a function.
n(ext) executes the current line and jumps to the next line in the current function.
c(ontinue) continues to the next breakpoint. When used with --trace , continues to the start of

the next test.
unt(il)
LINENO

continues to the specified line number.

See also:
The complete list can be found in Debugger Commands of the pdb documentation.

Combining pdb and tox

In order to combine pdb with tox, we need to make sure that we can pass arguments through tox to pytest. This is done
with the {posargs} function of tox, which was described in Passing pytest parameters to tox. We have already set up
this function in our tox.ini for Items:

[tox]
envlist = py38, py39, py310, py311
isolated_build = True
skip_missing_interpreters = True

[testenv]
deps =
pytest
faker
pytest-cov

commands = pytest --cov=items --cov-fail-under=99 {posargs}

(continues on next page)

16.5. pytest 219

https://docs.python.org/3/library/pprint.html
https://docs.python.org/3/library/pdb.html#debugger-commands

Python basics, Release 24.1.0

(continued from previous page)

[gh-actions]
python =
3.8: py38
3.9: py39
3.10: py310
3.11: py311

We want to run the Python 3.11 environment and start the debugger on a failed test with tox -e py311 -- --pdb
--no-cov. This will take us to the pdb, right at the assertion that failed.

Once we have found and fixed the error, we can run the tox environment again with this one test error: tox -e py311
-- --lf --tb=no --no-cov.

Overview of the most common pytest debugger options

Options Description
Options for selecting which tests are to be executed in which order and when they are to be stopped:
--lf,
--last-failedlf

executes the test that failed first

--ff, --failed-first starts with the test that failed first and then executes all of them.
-x, --exitfirst stops at the first error and then executes all.
-maxfail=NUM stops the tests after NUM errors.
--nf, --new-first executes new test files first, then the rest sorted by modification date.
--sw, --stepwise executes the last failed test, then stops at the next error and starts again at the last failed

test the next time. Similar to the combination of --lf -x, but more efficient.
--sw-skip,
--stepwise-skip

as above, but a failed test is skipped.

Options to control pytest output:
-v, --verbose: verbos, -vv even more detailed
--tb Traceback style: [auto|long|short|line|native|no]

I usually use --tb=short as the default setting in the configuration file and the others
for debugging.

-l, --showlocals shows local variables next to the stacktrace.
Options to start a command line debugger:
--pdb starts the Python debugger in the event of an error. Very useful for debugging with tox.
--trace starts the pdb source code debugger immediately when each test is executed.
--pdbcls uses alternatives to pdb, for example the IPython debugger with --pdb-cls =

IPython.terminal.debugger:TerminalPdb

16.6 Coverage

We have created an initial list of test cases. The tests in the tests/api directory test Items via the API. But how do
we know whether these tests comprehensively test our code? This is where code coverage comes into play.

Tools that measure code coverage observe your code while a test suite is running and record which lines are passed and
which are not. This measure – known as line coverage – is calculated by dividing the total number of executed lines
by the total number of lines of code. Code coverage tools can also tell you whether all paths in control statements are
traversed, a measurement known as branch coverage.

220 Chapter 16. Testing

Python basics, Release 24.1.0

However, code coverage cannot tell you if your test suite is good; it can only tell you how much of the application code
is being traversed by your test suite.

Coverage.py is the favourite Python tool that measures code coverage. And pytest-cov is a popular pytest plugin that is
often used in conjunction with Coverage.py.

16.6.1 Using Coverage.py with pytest-cov

Both Coverage.py and pytest-cov are third-party packages that must be installed before use:

You can create a report for the test coverage with Coverage.py.

$ bin/python -m pip install coverage pytest-cov

C:> Scripts\python -m pip install coverage pytest-cov

Note: If you want to determine the test coverage for Python 2 and Python<3.6, you must use Coverage<6.0.

To run tests with Coverage.py, you need to add the --cov option and specify either a path to the code you want to
measure or the installed package you are testing. In our case, the Items project is an installed package, so we will test
it with --cov=items.

The normal pytest output is followed by the coverage report, as shown here:

$ cd /PATH/TO/items
$ python3 -m venv .
$. bin/activate
$ python -m pip install ".[dev]"
$ pytest --cov=items
============================= test session starts ==============================
...
rootdir: /Users/veit/cusy/prj/items
configfile: pyproject.toml
testpaths: tests
plugins: cov-4.1.0, Faker-19.11.0
collected 35 items

tests/api/test_add.py [11%]
tests/api/test_config.py . [14%]
tests/api/test_count.py ... [22%]
tests/api/test_delete.py ... [31%]
tests/api/test_finish.py [42%]
tests/api/test_list.py [68%]
tests/api/test_start.py [80%]
tests/api/test_update.py [91%]
tests/api/test_version.py . [94%]
tests/cli/test_add.py .. [100%]

---------- coverage: platform darwin, python 3.11.5-final-0 ----------
Name Stmts Miss Cover

src/items/__init__.py 3 0 100%

(continues on next page)

16.6. Coverage 221

https://coverage.readthedocs.io/en/latest/
https://pytest-cov.readthedocs.io/en/latest/

Python basics, Release 24.1.0

(continued from previous page)

src/items/api.py 70 1 99%
src/items/cli.py 38 9 76%
src/items/db.py 23 0 100%

TOTAL 134 10 93%

============================== 35 passed in 0.11s ==============================

The previous output was generated by coverage’s reporting functions, although we did not call coverage directly.
pytest --cov=items instructed the pytest-cov plugin to

• set coverage to items with --source while running pytest with the tests

• execute coverage report for the line coverage report

Without pytest-cov, the commands would look like this:

$ coverage run --source=items -m pytest
$ coverage report

The files __init__.py and db.py have a coverage of 100%, which means that our test suite hits every line in these
files. However, this does not tell us that it is sufficiently tested or that the tests detect possible errors; but it at least tells
us that every line was executed during the test suite.

The cli.py file has a coverage of 76%. This may seem surprisingly high as we have not tested the CLI at all. However,
this is due to the fact that cli.py is imported by __init__.py, so that all function definitions are executed, but none
of the function contents.

However, we are really interested in the api.py file with 99% test coverage. We can find out what was missed by
re-running the tests and adding the --cov-report=term-missing option:

pytest --cov=items --cov-report=term-missing
============================= test session starts ==============================
...
rootdir: /Users/veit/cusy/prj/items
configfile: pyproject.toml
testpaths: tests
plugins: cov-4.1.0, Faker-19.11.0
collected 35 items

tests/api/test_add.py [11%]
tests/api/test_config.py . [14%]
tests/api/test_count.py ... [22%]
tests/api/test_delete.py ... [31%]
tests/api/test_finish.py [42%]
tests/api/test_list.py [68%]
tests/api/test_start.py [80%]
tests/api/test_update.py [91%]
tests/api/test_version.py . [94%]
tests/cli/test_add.py .. [100%]

---------- coverage: platform darwin, python 3.11.5-final-0 ----------
Name Stmts Miss Cover Missing

(continues on next page)

222 Chapter 16. Testing

Python basics, Release 24.1.0

(continued from previous page)

src/items/__init__.py 3 0 100%
src/items/api.py 68 1 99% 52
src/items/cli.py 38 9 76% 18-19, 25, 39-43, 51
src/items/db.py 23 0 100%

TOTAL 132 10 92%

============================== 35 passed in 0.11s ==============================

Now that we have the line numbers of the untested lines, we can open the files in an editor and view the missing lines.
However, it is easier to look at the HTML report.

See also:
• pytest-cov’s documentation

Generate HTML reports

With Coverage.py we can generate HTML reports to view the coverage data in more detail. The report is generated
either with the option --cov-report=html or by executing coverage html after a previous coverage run:

$ cd /PATH/TO/items
$ python3 -m venv .
$. bin/acitvate
$ python -m pip install ".[dev]"
$ pytest --cov=items --cov-report=html

Both commands will prompt Coverage.py to create an HTML report in the htmlcov/ directory. Open htmlcov/
index.html with a browser and you should see the following:

If you click on the src/items/api.py: file, a report for this file is displayed:

16.6. Coverage 223

https://pytest-cov.readthedocs.io/

Python basics, Release 24.1.0

The upper part of the report shows the percentage of rows covered (99%), the total number of statements (68) and how
many statements were executed (67), missed (1) and excluded (0). Click on missing to highlight the rows that were not
executed:

It looks like the function add_item() has an exception MissingSummary, which is not tested yet.

Exclude code from test coverage

In the HTML reports you will find a column with the specification 0 excluded. This refers to a function of Coverage.py
that allows us to exclude some lines from the check. We do not exclude anything in items. However, it is not uncommon
for some lines of code to be excluded from the test coverage calculation, for example modules that are to be both
imported and executed directly may contain a block that looks something like this:

if __name__ == '__main__':
main()

This command tells Python to execute main() when we call the module directly with python my_module.py, but

224 Chapter 16. Testing

Python basics, Release 24.1.0

not to execute the code when the module is imported. These types of code blocks are often excluded from testing with
a simple pragma statement:

if __name__ == '__main__': # pragma: no cover
main()

This instructs Coverage.py to exclude either a single line or a block of code. If, as in this case, the pragma is in the if
statement, you do not have to insert it into both lines of code.

Alternatively, this can also be configured for all occurrences:

[run]
branch = True

[report]
; Regexes for lines to exclude from consideration
exclude_also =

; Don’t complain if tests don’t hit defensive assertion code:
raise AssertionError
raise NotImplementedError

; Don't complain if non-runnable code isn’t run:
if __name__ == .__main__.:

ignore_errors = True

[html]
directory = coverage_html_report

[tool.coverage.run]
branch = true

[tool.coverage.report]
Regexes for lines to exclude from consideration
exclude_also = [

Don’t complain if tests don’t hit defensive assertion code:
"raise AssertionError",
"raise NotImplementedError",

Don’t complain if non-runnable code isn’t run:
"if __name__ == .__main__.:",
]

ignore_errors = true

[tool.coverage.html]
directory = "coverage_html_report"

[coverage:run]
branch = True

[coverage:report]
; Regexes for lines to exclude from consideration

(continues on next page)

16.6. Coverage 225

Python basics, Release 24.1.0

(continued from previous page)

exclude_also =

; Don’t complain if tests don’t hit defensive assertion code:
raise AssertionError
raise NotImplementedError

; Don’t complain if non-runnable code isn’t run:
if __name__ == .__main__.:

ignore_errors = True

[coverage:html]
directory = coverage_html_report

See also:
Configuration reference

16.6.2 Extensions

In Coverage.py plugins you will also find a number of extensions for Coverage.

16.6.3 Test coverage of all tests with GitHub actions

This instructs Coverage.py to exclude either a single line or a block of code. If, as in this case, the pragma is in the if
statement, you do not have to insert it into both lines of code.

Extensions In Coverage.py plugins you will also find a number of extensions for Coverage.

16.6.4 Test coverage of all tests with GitHub actions

After you have checked the test coverage, you can upload the files as GitHub actions, for example in a ci.yaml as
artefacts, so that you can reuse them later in other jobs:

47 - name: "Upload coverage data"
48 uses: actions/upload-artifact@v3
49 with:
50 name: "coverage-data"
51 path: .coverage.*
52 if-no-files-found: ignore

if-no-files-found: ignore
is useful if you don’t want to measure the test coverage for all Python versions in order to get results faster. You
should therefore only upload the data for those elements of your matrix that you want to take into account.

After all the tests have been run, you can define another job that summarises the results:

54 coverage:
55 name: "Combine and check coverage"
56 needs: tests
57 runs-on: ubuntu-latest

(continues on next page)

226 Chapter 16. Testing

https://coverage.readthedocs.io/en/latest/config.html
https://gist.github.com/nedbat/2e9dbf7f33b1e0e857368af5c5d06202

Python basics, Release 24.1.0

(continued from previous page)

58 steps:
59 - name: "Check out the repo"
60 uses: "actions/checkout@v3"
61

62 - name: "Set up Python"
63 uses: "actions/setup-python@v4"
64 with:
65 python-version: "3.11"
66

67 - name: "Install dependencies"
68 run: |
69 python -m pip install --upgrade coverage[toml]
70

71 - name: "Download coverage data"
72 uses: actions/download-artifact@v3
73 with:
74 name: "coverage-data"
75

76 - name: "Combine coverage and fail it it’s under 100 %"
77 run: |
78 python -m coverage combine
79 python -m coverage html --skip-covered --skip-empty
80

81 # Report and write to summary.
82 python -m coverage report | sed 's/^/ /' >> $GITHUB_STEP_SUMMARY
83

84 # Report again and fail if under 100%.
85 python -Im coverage report --fail-under=100
86

87 - name: "Upload HTML report if check failed"
88 uses: actions/upload-artifact@v3
89 with:
90 name: html-report
91 path: htmlcov
92 if: ${{ failure() }}

needs: tests
ensures that all tests are performed. If your job that runs the tests has a different name, you will need to change
it here.

name: "Download coverage data"
downloads the test coverage data that was previously uploaded with name: "Upload coverage data".

name: "Combine coverage and fail it it’s under 100 %"
combines the test coverage and creates an HTML report if the condition --fail-under=100 is met.

Once the workflow is complete, you can download the HTML report under YOUR_REPO → Actions → tests → Com-
bine and check coverage.

See also:
• How to Ditch Codecov for Python Projects

• structlog main.yml

16.6. Coverage 227

https://hynek.me/articles/ditch-codecov-python/
https://github.com/hynek/structlog/blob/main/.github/workflows/ci.yml

Python basics, Release 24.1.0

16.6.5 Badge

You can use GitHub Actions to create a badge with your code coverage. A GitHub Gist is also required to store the
parameters for the badge, which is rendered by shields.io. To do this, we extend our ci.yaml as follows:

94 - name: "Create badge"
95 uses: schneegans/dynamic-badges-action@v1.6.0
96 with:
97 auth: ${{ secrets.GIST_TOKEN }}
98 gistID: YOUR_GIST_ID
99 filename: covbadge.json

100 label: Coverage
101 message: ${{ env.total }}%
102 minColorRange: 50
103 maxColorRange: 90
104 valColorRange: ${{ env.total }}

Line 97
GIST_TOKEN is a personal GitHub access token.

Line 98
You should replace YOUR_GIST_ID with your own Gist ID. If you don’t have a Gist ID yet, you can create one
with:

1. Call up https://gist.github.com and create a new gist, which you can name test.json, for example. The
ID of the gist is the long alphanumeric part of the URL that you need here.

2. Then go to https://github.com/settings/tokens and create a new token with the gist area.

3. Finally, go to YOUR_REPO → Settings → Secrets → Actions and add this token. You can give it any name
you like, for example GIST_SECRET.

If you use Dependabot to automatically update the dependencies of your repository, you must also add the
GIST_SECRET in YOUR_REPO → Settings → Secrets → Dependabot.

Lines 102-104
The badge is automatically coloured:

• 50 % in red

• 90 % in green

• with a colour gradient between the two

Now the badge can be displayed with a URL like this: https://img.shields.io/endpoint?url=https://gist.
githubusercontent.com/YOUR_GITHUB_NAME/GIST_SECRET/raw/covbadge.json.

228 Chapter 16. Testing

https://shields.io
https://gist.github.com
https://github.com/settings/tokens
https://github.com/dependabot

Python basics, Release 24.1.0

16.7 Mock

In this chapter, we will test the CLI. For this, we will use the mock package, which has been delivered as part of the
Python standard library under the name unittest.mock since Python 3.3. For older versions of Python, you can
install it with :

$. bin/activate
$ python -m pip install mock

C:> Scripts\activate.bat
C:> python -m pip install mock

Mock objects are sometimes also referred to as test doubles, fakes or stubs. With pytest’s own monkeypatch fixture and
mock, you should have all the functions you need.

16.7.1 Example

Firstly, we wanted to start with a simple example and check whether the working days from Monday to Friday are
determined correctly.

1. We import datetime.datetime and Mock:

1 from datetime import datetime
2 from unittest.mock import Mock

2. Then we define two test days:

5 monday = datetime(year=2021, month=10, day=11)
6 saturday = datetime(year=2021, month=10, day=16)

3. Now we define a method for checking the working days, whereby the Python datetime library treats Mondays as
0 and Sundays as 6:

9 def is_workingday():
10 today = datetime.today()
11 return 0 <= today.weekday() < 5

4. Then we mock datetime:

14 datetime = Mock()

5. Finally, we test our two mock objects:

17 datetime.today.return_value = monday
18 # Test Tuesday is a weekday
19 assert is_workingday()

21 datetime.today.return_value = saturday
22 # Test Saturday is not a weekday
23 assert not is_workingday()

16.7. Mock 229

https://docs.python.org/3/library/unittest.mock.html

Python basics, Release 24.1.0

16.7.2 Testing with Typer

For testing the Items CLI, we will also look at how the CliRunner provided by Typer helps with testing. Typer provides
a test interface that allows us to call our application without having to rely on subprocess.run() as in the short capsys
example. This is good because we cannot simulate what is running in a separate process. So in tests/cli/conftest.
py we can just pass our application items.cli.app and a list of strings representing the command to the invoke()
function of our runner: more precisely, we use shlex.split(command_string)() to convert the commands, for
example list -o "veit" into ["list", "-o", "veit"] and can then intercept and return the output.

import shlex

import pytest
from typer.testing import CliRunner

import items

runner = CliRunner()

@pytest.fixture()
def items_cli(db_path, monkeypatch, items_db):

monkeypatch.setenv("ITEMS_DB_DIR", db_path.as_posix())

def run_cli(command_string):
command_list = shlex.split(command_string)
result = runner.invoke(items.cli.app, command_list)
output = result.stdout.rstrip()
return output

return run_cli

We can then simply use this fixture to test the version in tests/cli/test_version.py, for example:

import items

def test_version(items_cli):
assert items_cli("version") == items.__version__

16.7.3 Mocking of attributes

Let’s take a look at how we can use mocking to ensure that, for example, three-digit version numbers of items.
__version__() are also output correctly via the CLI. For this we will use mock.patch.object() as a context
manager:

from unittest import mock

import items

def test_mock_version(items_cli):
with mock.patch.object(items, "__version__", "100.0.0"):

assert items_cli("version") == items.__version__

230 Chapter 16. Testing

https://typer.tiangolo.com
https://docs.python.org/3/library/subprocess.html#subprocess.run

Python basics, Release 24.1.0

In our test code, we import items. The resulting items object is what we will patch. The call to mock.patch.
object(), which is used as a context manager within a with block, returns a mock object that is cleaned up after the
with block:

1. In this case, the __version__ attribute of items is replaced with "100.0.0" for the duration of the with block.

2. We then use items_cli() to call our CLI application with the "version" command. However, when the
version() method is called, the __version__ attribute is not the original string, but the string we replaced
with mock.patch.object().

16.7.4 Mocking classes and methods

In src/items/cli.py we have defined config() as follows:

def config():
"""List the path to the Items db."""
with items_db() as db:

print(db.path())

items_db() is a context manager that returns an items.ItemsDB object. The returned object is then used as a db to
call db.path(). So we should mock two things here: items.ItemsDB and one of its methods, path(). Let’s start
with the class:

from unittest import mock

import items

def test_mock_itemsdb(items_cli):
with mock.patch.object(items, "ItemsDB") as MockItemsDB:

mock_db_path = MockItemsDB.return_value.path.return_value = "/foo/"
assert items_cli("config") == str(mock_db_path)

Let’s make sure that it really works:

$ pytest -v -s tests/cli/test_config.py::test_mock_itemsdb
============================= test session starts ==============================
...
configfile: pyproject.toml
plugins: cov-4.1.0, Faker-19.11.0
collected 1 item

tests/cli/test_config.py::test_mock_itemsdb PASSED

============================== 1 passed in 0.04s ===============================

Great, now we just have to move the mock for the database to a fixture, because we will need it in many test methods:

@pytest.fixture()
def mock_itemsdb():

with mock.patch.object(items"ItemsDB") as MockItemsDB:
yield MockItemsDB.return_value

This fixture mocks the ItemsDB object and returns the return_value so that tests can use it to replace things like
path:

16.7. Mock 231

Python basics, Release 24.1.0

def test_mock_itemsdb(items_cli, mock_itemsdb):
mock_itemsdb.path.return_value = "/foo/"
result = runner.invoke(app, ["config"])
assert result.stdout.rstrip() == "/foo/"

Alternatively, the @mock.patch() decorator can also be used to mock classes or objects. In the following examples,
the output of os.listdir is mocked. This does not require db_path to be present in the file system:

import os
from unittest import mock

@mock.patch("os.listdir", mock.MagicMock(return_value="db_path"))
def test_listdir():

assert "db_path" == os.listdir()

Another alternative is to define the return value separately:

@mock.patch("os.listdir")
def test_listdir(mock_listdir):

mock_listdir.return_value = "db_path"
assert "db_path" == os.listdir()

16.7.5 Synchronising mocks with autospec

Mock objects are usually intended as objects that are used instead of the real implementation. By default, however, they
will accept any access. For example, if the real object allows start(index)(), our mock objects should also allow
start(index)(). However, there is a problem with this. Mock objects are too flexible by default: they would also
accept stort() or other misspelled, renamed or deleted methods or parameters. Over time, this can lead to so-called
mock drift if the interface you are modelling changes, but your mock in your test code does not. This form of mock
drift can be solved by adding autospec=True to the mock during creation:

@pytest.fixture()
def mock_itemsdb():

with mock.patch.object(items"ItemsDB", autospec=True) as MockItemsDB:
yield MockItemsDB.return_value

Usually, this protection is always built in with autospec. The only exception I know of is if the class or object being
mocked has dynamic methods or if attributes are added at runtime.

See also:
The Python documentation has a large section on autospec: Autospeccing.

232 Chapter 16. Testing

https://docs.python.org/3/library/unittest.mock.html#auto-speccing

Python basics, Release 24.1.0

16.7.6 Check call with assert_called_with()

So far, we have used the return values of a mocking method to ensure that our application code handles the return
values correctly. But sometimes there is no useful return value, for example with items add some tasks -o veit.
In these cases, we can ask the mock object if it was called correctly. After calling items_cli("add some tasks -o
veit")(), the API is not used to check whether the item has entered the database, but a mock is used to ensure that
the CLI has called the API method correctly. Finally, the implementation of the add() function calls db.add_item()
with an Item object:

def test_add_with_owner(mock_itemsdb, items_cli):
items_cli("add some task -o veit")
expected = items.Item("some task", owner="veit", state="todo")
mock_itemsdb.add_item.assert_called_with(expected)

If add_item() is not called or is called with the wrong type or the wrong object content, the test fails. For example,
if we capitalise the string "Veit" in expected, but not in the CLI call, we get the following output:

$ pytest -s tests/cli/test_add.py::test_add_with_owner
============================= test session starts ==============================
...
configfile: pyproject.toml
plugins: cov-4.1.0, Faker-19.11.0
collected 1 item

tests/cli/test_add.py F
...
> raise AssertionError(_error_message()) from cause
E AssertionError: expected call not found.
E Expected: add_item(Item(summary='some task', owner='Veit', state='todo',␣
→˓id=None))
E Actual: add_item(Item(summary='some task', owner='veit', state='todo',␣
→˓id=None))
...
=========================== short test summary info ============================
FAILED tests/cli/test_add.py::test_add_with_owner - AssertionError: expected call not␣
→˓found.
============================== 1 failed in 0.08s ===============================

See also:
There is a whole range of variants of assert_called(). A complete list and description can be found in
unittest.mock.Mock.assert_called.

If the only way to test is to ensure the correct call, the various assert_called*() methods fulfil their purpose.

Wenn die einzige Möglichkeit zum Testen darin besteht, den korrekten Aufruf sicherzustellen, erfüllen die verschiede-
nen assert_called*()-Methoden ihren Zweck.

16.7. Mock 233

https://docs.python.org/3/library/unittest.mock.html#unittest.mock.Mock.assert_called

Python basics, Release 24.1.0

16.7.7 Create error conditions

Let’s now check if the Items CLI handles error conditions correctly. For example, here is the implementation of the
delete command:

@app.command()
def delete(item_id: int):

"""Remove item in db with given id."""
with items_db() as db:

try:
db.delete_item(item_id)

except items.InvalidItemId:
print(f"Error: Invalid item id {item_id}")

To test how the CLI handles an error condition, we can pretend that delete_item() generates an exception by assign-
ing the exception to the side_effect attribute of the mock object, like this:

def test_delete_invalid(mock_itemsdb, items_cli):
mock_itemsdb.delete_item.side_effect = items.api.InvalidItemId
out = items_cli("delete 42")
assert "Error: Invalid item id 42" in out

That’s all we need to test the CLI: mocking return values, checking calls to mock functions and mocking exceptions.
However, there is a whole range of other mocking techniques that we have not covered. So be sure to read unittest.mock
— mock object library if you want to use mocking extensively.

16.7.8 Limitations of mocking

One of the biggest problems with using mocks is that we are no longer testing the behaviour in a test, but the imple-
mentation. However, this is not only time-consuming but also dangerous: a valid refactoring, for example changing a
variable name, can cause tests to fail if that particular variable has been mocked. However, we only want our tests to
fail when there are breaks in behaviour, not just when there are code changes.

However, sometimes mocking is the easiest way to create exceptions or error conditions and make sure your code
handles them correctly. There are also cases where testing behaviour is unreasonable, such as when accessing a payment
API or sending emails. In these cases, a good option is to test whether your code calls a specific API method at the
right time and with the right parameters.

See also:
• Hynek Schlawack: “Don’t Mock What You Don’t Own”

16.7.9 Avoid mocking with tests on multiple levels

We can also test the Items CLI without mocks by also using the API. We will not test the API, but only use it to check
the behaviour of actions that are executed via the CLI. We can also test the test_add_with_owner example as follows:

def test_add_with_owner(items_db, items_cli):
items_cli("add some task -o veit")
expected = items.Item("some task", owner="veit", state="todo")
all = items_db.list_items()
assert len(all) == 1
assert all[0] == expected

234 Chapter 16. Testing

https://docs.python.org/3/library/unittest.mock.html#unittest.mock.Mock.side_effect
https://docs.python.org/3/library/unittest.mock.html
https://docs.python.org/3/library/unittest.mock.html
https://hynek.me/articles/what-to-mock-in-5-mins/

Python basics, Release 24.1.0

Mocking tests the implementation of the command line interface and ensures that an API call is made with certain pa-
rameters. The mixed-layer approach tests the behaviour to ensure that the result meets our expectations. This approach
is much less of a change detector and has a greater chance of remaining valid during a refactoring. Interestingly, the
tests are also about twice as fast:

$ pytest -s tests/cli/test_add.py::test_add_with_owner
============================= test session starts ==============================
...
configfile: pyproject.toml
plugins: cov-4.1.0, Faker-19.11.0
collected 1 item

tests/cli/test_add.py .

============================== 1 passed in 0.03s ===============================

We could also avoid mocking in another way. We could test the behaviour completely via the CLI. This might require
parsing the output of the items list to check the correct database content.

In the API, add_item() returns an index and provides a get_item(index)() method to help with testing. Both
methods are not available in the CLI, but could be. We could perhaps add the items get index or items info
index commands so we can retrieve an item instead of having to use items list for everything. list also already
supports filtering. Maybe filtering by index would work instead of adding a new command. And we could add an output
to items add that says something like Item added at index 3. These changes would fall into the Design for Testability
category. They also don’t seem to be deep interface interventions and perhaps should be considered in future versions.

16.7.10 Plugins to support mocking

So far we have focussed on the direct use of mock. However, there are many plugins that help with mocking, such as
pytest-mock, which provides a mocker fixture. One advantage is that the fixture cleans up after itself, so you don’t
need to use a with block like we did in our examples.

There are also some special mocking libraries:

• The following are suitable for mocking database accesses:

– pytest-postgresql

– pytest-mongo

– pytest-mysql

– pytest-dynamodb.

• You can use pytest-httpserver to test HTTP servers.

• You can use responses or betamax to mock requests.

• Other tools for different requirements are:

– pytest-rabbitmq

– pytest-solr

– pytest-elasticsearch und pytest-redis.

16.7. Mock 235

https://docs.python.org/3/library/unittest.mock.html
https://pypi.org/project/pytest-mock/
https://pypi.org/project/pytest-postgresql/
https://pypi.org/project/pytest-mongo/
https://pypi.org/project/pytest-mysql/
https://pypi.org/project/pytest-dynamodb/
https://pypi.org/project/pytest-httpserver/
https://pypi.org/project/responses/
https://pypi.org/project/betamax/
https://pypi.org/project/requests/
https://pypi.org/project/pytest-rabbitmq/
https://pypi.org/project/pytest-solr/
https://pypi.org/project/pytest-elasticsearch/
https://pypi.org/project/pytest-redis/

Python basics, Release 24.1.0

16.8 tox

tox is an automation tool that works similarly to a CI tool, but can be run both locally and in conjunction with other CI
tools on a server.

In the following, we will set up tox for our Items application so that it helps us with local testing. We will then set up
testing using GitHub Actions.

16.8.1 Introduction to tox

tox is a command line tool that allows you to run your complete test suite in different environments. We will use tox to
test the Items project in multiple Python versions, but tox is not limited to Python versions only. You can use it to test
with different dependency configurations and different configurations for different operating systems. tox uses project
information from the setup.py or pyproject.toml file for the package under test to create an installable distribution
of your package. It searches the tox.ini file for a list of environments and then performs the following steps for each:

1. creates a virtual environment,

2. installs some dependencies with pip,

3. build your package,

4. install your package with pip,

5. run further tests.

After all environments have been tested, tox outputs a summary of the results.

Note: Although tox is used by many projects, there are alternatives that fulfil similar functions. Two alternatives to
tox are nox and invoke.

16.8.2 Setting up tox

Until now, we had the items code in a src/ directory and the tests in tests/api/ and tests/cli/. Now we will add
a tox.ini file so that the structure looks like this:

items
...
pyproject.toml
src

items
...

tests
api

__init__.py
conftest.py
test_....py

cli
__init__.py
conftest.py
test_....py

tox.ini

This is a typical layout for many projects. Let’s take a look at a simple tox.ini file in the Items project:

236 Chapter 16. Testing

https://tox.readthedocs.io/
https://nox.thea.codes/en/stable/
https://www.pyinvoke.org

Python basics, Release 24.1.0

[tox]
envlist = py311
isolated_build = True

[testenv]
deps =
pytest>=6.0
faker

commands = pytest

In the [tox] section, we have defined envlist = py311. This is a shortcut that tells tox to run our tests with Python
version 3.11. We will be adding more Python versions shortly, but using one version helps to understand the flow of
tox.

Also note the line isolated_build = True: This is required for all packages configured with pyproject.toml.
However, for all projects configured with setup.py that use the setuptools library, this line can be omitted.

In the [testenv] section, pytest and faker are listed as dependencies under deps. So tox knows that we need
these two tools for testing. If you wish, you can also specify which version should be used, for example pytest>=6.0.
Finally, commands instruct tox to execute pytest in every environment.

16.8.3 Executing tox

Before you can run tox, you must ensure that you have installed it:

$ python3 -m venv .
$. bin/acitvate
$ python -m pip install tox

C:> python -m venv .
C:> Scripts\activate
C:> python -m pip install tox

To run tox, simply start tox:

$ tox
.pkg: _optional_hooks> python /PATH/TO/items/lib/python3.11/site-packages/pyproject_api/_
→˓backend.py True hatchling.build
.pkg: get_requires_for_build_sdist> python PATH/TO/items/lib/python3.11/site-packages/
→˓pyproject_api/_backend.py True hatchling.build
.pkg: build_sdist> python PATH/TO/items/lib/python3.11/site-packages/pyproject_api/_
→˓backend.py True hatchling.build
py311: install_package> python -I -m pip install --force-reinstall --no-deps PATH/TO/
→˓items/.tox/.tmp/package/14/items-0.1.0.tar.gz
py311: commands[0]> pytest
============================= test session starts ==============================
...
configfile: pyproject.toml
testpaths: tests
plugins: Faker-19.11.0
collected 49 items

tests/api/test_add.py [8%]
(continues on next page)

16.8. tox 237

Python basics, Release 24.1.0

(continued from previous page)

tests/api/test_config.py . [10%]
tests/api/test_count.py ... [16%]
tests/api/test_delete.py ... [22%]
tests/api/test_finish.py [30%]
tests/api/test_list.py [48%]
tests/api/test_start.py [57%]
tests/api/test_update.py [65%]
tests/api/test_version.py . [67%]
tests/cli/test_add.py .. [71%]
tests/cli/test_config.py .. [75%]
tests/cli/test_count.py . [77%]
tests/cli/test_delete.py . [79%]
tests/cli/test_errors.py [87%]
tests/cli/test_finish.py . [89%]
tests/cli/test_list.py .. [93%]
tests/cli/test_start.py . [95%]
tests/cli/test_update.py . [97%]
tests/cli/test_version.py . [100%]

============================== 49 passed in 0.08s ==============================
.pkg: _exit> python /PATCH/TO/items/lib/python3.11/site-packages/pyproject_api/_backend.
→˓py True hatchling.build
py311: OK (1.48=setup[1.21]+cmd[0.27] seconds)
congratulations :) (1.51 seconds)

16.8.4 Testing multiple Python versions

To do this, we extend envlist in the tox.ini file to add further Python versions:

[tox]
envlist = py38, py39, py310, py311
isolated_build = True
skip_missing_interpreters = True

We will now test Python versions from 3.8 to 3.11. In addition, we have also added the setting
skip_missing_interpreters = True so that tox does not fail if one of the listed Python versions is missing on
your system. If the value is set to True, tox will run the tests with every available Python version, but will skip versions
it doesn’t find without failing. The output is very similar, although I will only highlight the differences in the following
illustration:

$ tox
py38: skipped because could not find python interpreter with spec(s): py38
py38: SKIP in 2.13 seconds
py39: install_package> python -I -m pip install --force-reinstall --no-deps /PATCH/TO/
→˓items/.tox/.tmp/package/15/items-0.1.0.tar.gz
py39: commands[0]> pytest
============================= test session starts ==============================
...
============================== 49 passed in 0.16s ==============================
py39: OK ✓✓✓ in 8.08 seconds
py310: skipped because could not find python interpreter with spec(s): py310

(continues on next page)

238 Chapter 16. Testing

Python basics, Release 24.1.0

(continued from previous page)

py310: SKIP in 0 seconds
py311: install_package> python -I -m pip install --force-reinstall --no-deps /PATH/TO/
→˓items/.tox/.tmp/package/16/items-0.1.0.tar.gz
py311: commands[0]> pytest
============================= test session starts ==============================
...
============================== 49 passed in 0.09s ==============================
.pkg: _exit> python /PYTH/TO/items/lib/python3.11/site-packages/pyproject_api/_backend.
→˓py True hatchling.build

py38: SKIP (2.13 seconds)
py39: OK (8.08=setup[6.92]+cmd[1.16] seconds)
py310: SKIP (0.00 seconds)
py311: OK (1.24=setup[0.95]+cmd[0.29] seconds)
congratulations :) (11.48 seconds)

16.8.5 Running Tox environments in parallel

In the previous example, the different environments were executed one after the other. It is also possible to run them
in parallel with the -p option:

$ tox -p
py38: SKIP in 0.02 seconds
py310: SKIP in 0.29 seconds
py311: OK ✓✓✓ in 1.53 seconds
py38: SKIP (0.02 seconds)
py39: OK (2.21=setup[1.88]+cmd[0.33] seconds)
py310: SKIP (0.29 seconds)
py311: OK (1.53=setup[1.24]+cmd[0.29] seconds)
congratulations :) (2.24 seconds)

Note: The output is not abbreviated; this is the full output you will see if everything works.

16.8.6 Add coverage report in tox

The configuration of coverage reports can easily be added to the tox.ini file. To do this, we need to add pytest-cov
to the deps settings so that the pytest-cov plugin is installed in the tox test environments. Including pytest-cov
also includes all its dependencies, such as coverage. We then extend commands to pytest --cov=items:

[tox]
envlist = py38, py39, py310, py311
isolated_build = True
skip_missing_interpreters = True

[testenv]
deps =
pytest
faker
pytest-cov

commands = pytest --cov=items

16.8. tox 239

Python basics, Release 24.1.0

When using Coverage with tox, it can sometimes be useful to set up a .coveragerc file to tell Coverage which source
code paths should be considered identical:

[paths]
source =

src
.tox/*/site-packages

The items source code is initially located in src/items/ before tox creates the virtual environments and installs items
in the environment. It is then located in .tox/py311/lib/python3.11/site-packages/items, for example.

$ tox -e py311
...
py311: commands[0]> pytest --cov=items
...
---------- coverage: platform darwin, python 3.11.5-final-0 ----------
Name Stmts Miss Cover

.tox/py311/lib/python3.11/site-packages/items/__init__.py 3 0 100%
.tox/py311/lib/python3.11/site-packages/items/api.py 68 1 99%
.tox/py311/lib/python3.11/site-packages/items/cli.py 86 0 100%
.tox/py311/lib/python3.11/site-packages/items/db.py 23 0 100%

TOTAL 180 1 99%

============================== 49 passed in 0.17s ==============================
...
py311: OK (1.85=setup[1.34]+cmd[0.51] seconds)
congratulations :) (1.89 seconds)

Note: We have used the -e py311 option here to select a specific environment.

16.8.7 Set minimum coverage

When executing coverage by tox, it also makes sense to define a minimum coverage level in order to recognise any
coverage failures. This is achieved with the --cov-fail-under option:

[tox]
envlist = py38, py39, py310, py311
isolated_build = True
skip_missing_interpreters = True

[testenv]
deps =
pytest
faker
pytest-cov

commands = pytest --cov=items --cov-fail-under=100

This adds an additional line to the output:

240 Chapter 16. Testing

Python basics, Release 24.1.0

$ tox -e py311
...
============================= test session starts ==============================
...
---------- coverage: platform darwin, python 3.11.5-final-0 ----------
Name Stmts Miss Cover

.tox/py311/lib/python3.11/site-packages/items/__init__.py 3 0 100%
.tox/py311/lib/python3.11/site-packages/items/api.py 68 1 99%
.tox/py311/lib/python3.11/site-packages/items/cli.py 86 0 100%
.tox/py311/lib/python3.11/site-packages/items/db.py 23 0 100%

TOTAL 180 1 99%

FAIL Required test coverage of 100% not reached. Total coverage: 99.44%

============================== 49 passed in 0.16s ==============================
py311: exit 1 (0.43 seconds) /PATH/TO/items> pytest --cov=items --cov-fail-under=100␣
→˓pid=58109
.pkg: _exit> python /PATH/TO/items/lib/python3.11/site-packages/pyproject_api/_backend.
→˓py True hatchling.build

py311: FAIL code 1 (1.65=setup[1.22]+cmd[0.43] seconds)
evaluation failed :((1.68 seconds)

16.8.8 Passing pytest parameters to tox

We can also call individual tests with tox by making another change so that parameters can be passed to pytest:

[tox]
envlist = py38, py39, py310, py311
isolated_build = True
skip_missing_interpreters = True

[testenv]
deps =
pytest
faker
pytest-cov

commands = pytest --cov=items --cov-fail-under=100 {posargs}

To pass arguments to pytest, insert them between the tox arguments and the pytest arguments. In this case, we select
test_version tests with the -k keyword option. We also use --no-cov to disable coverage:

$ tox -e py311 -- -k test_version --no-cov
...
py311: commands[0]> pytest --cov=items --cov-fail-under=100 -k test_version --no-cov
============================= test session starts ==============================
...
configfile: pyproject.toml
testpaths: tests
plugins: cov-4.1.0, Faker-19.11.0
collected 49 items / 47 deselected / 2 selected

(continues on next page)

16.8. tox 241

Python basics, Release 24.1.0

(continued from previous page)

tests/api/test_version.py . [50%]
tests/cli/test_version.py . [100%]

======================= 2 passed, 47 deselected in 0.04s =======================
.pkg: _exit> python /PATH/TO/items/lib/python3.11/site-packages/pyproject_api/_backend.
→˓py True hatchling.build

py311: OK (1.51=setup[1.25]+cmd[0.26] seconds)
congratulations :) (1.53 seconds)

tox is not only ideal for the local automation of test processes, but also helps with server-based CI . Let’s continue with
the execution of pytest and tox using GitHub actions.

16.8.9 Running tox with GitHub actions

If your project is hosted on GitHub, you can use GitHub actions to automatically run your tests in different environments.
A whole range of environments are available for GitHub actions: github.com/actions/virtual-environments.

1. To create a GitHub action in your project, click on Actions → set up a workflow yourself. This usually creates a
.github/workflows/main.yml file.

2. Give this file a more descriptive name. We usually use ci.yml for this.

3. The prefilled YAML file is not very helpful for our purposes. You can replace the text, for example with:

name: CI
on: [push, pull_request]
jobs:
build:
runs-on: ubuntu-latest
strategy:
matrix:
python: ["3.8", "3.9", "3.10", "3.11"]

steps:
- uses: actions/checkout@v2
- name: Setup Python
uses: actions/setup-python@v2
with:
python-version: ${{ matrix.python }}

- name: Install tox and any other packages
run: python -m pip install tox tox-gh-actions

- name: Run tox for "${{ matrix.python }}"
run: python -m tox

name
can be any name. It is displayed in the GitHub Actions user interface.

on: [push, pull_request]
instructs Actions to run our tests every time we either push code to the repository or a pull request is created.
In the case of pull requests, the result of the test run can be viewed in the pull request interface. All results
of the GitHub actions can be seen on the GitHub user interface.

runs-on: ubuntu-latest
specifies the operating system on which the tests are to be executed. Here the tests only run on Linux, but
other operating systems are also available.

242 Chapter 16. Testing

https://github.com/
https://github.com/actions/virtual-environments/#readme

Python basics, Release 24.1.0

matrix: python: ["3.8", "3.9", "3.10", "3.11"]
specifies which Python version is to be executed.

steps
is a list of steps. The name of each step can be arbitrary and is optional.

uses: actions/checkout@v2
is a GitHub actions tool that checks out our repository so that the rest of the workflow can access it.

uses: actions/setup-python@v2
is a GitHub actions tool that configures Python and installs it in a build environment.

with: python-version: ${{ matrix.python }}
says that an environment should be created for each of the Python versions listed in matrix.python.

run: python -m pip install tox tox-gh-actions
installs tox and simplifies the execution of tox in GitHub actions with tox-gh-actions by providing the
environment that tox itself uses as the environment for the tests. However, we still need to adjust our tox.
ini file for this, for example:

[gh-actions]
python =

3.8: py38
3.9: py39
3.10: py310
3.11: py311

This assigns GitHub actions to tox environments.

Note:
• You do not need to specify all variants of your environment. This distinguishes tox-gh-actions

from tox -e py.

• Make sure that the versions in the [gh-actions] section match the available Python versions and, if
applicable, those in the GitHub actions for Git pre-commit hooks.

• Since all tests for a specific Python version are executed one after the other in a container, the advan-
tages of parallel execution are lost.

run: python -m tox
executes tox.

4. You can then click on Start commit. As we want to make further changes before the tests are executed automati-
cally, we select Create a new branch for this commit and start a pull request and github-actions as the name for
the new branch. Finally, you can click on Create pull request.

5. To switch to the new branch, we go to Code → main → github-actions.

The actions syntax is well documented. A good starting point in the GitHub Actions documentation is the Building
and Testing Python page. The documentation also shows you how to run pytest directly without tox and how to extend
the matrix to multiple operating systems. As soon as you have set up your *.yml file and uploaded it to your GitHub
repository, it will be executed automatically. You can then see the runs in the Actions tab:

The different Python environments are listed on the left-hand side. If you select one, the results for this environment
are displayed, as shown in the following screenshot:

See also:
• Building and testing Python

16.8. tox 243

https://pypi.org/project/tox-gh-actions/
https://www.python4data.science/en/latest/productive/git/advanced/hooks/ci.html#gh-action-pre-commit-example
https://www.python4data.science/en/latest/productive/git/glossary.html#term-Branch
https://docs.github.com/en/actions/automating-builds-and-tests/building-and-testing-python
https://docs.github.com/en/actions/automating-builds-and-tests/building-and-testing-python
https://docs.github.com/en/actions/automating-builds-and-tests/building-and-testing-python

Python basics, Release 24.1.0

• Workflow syntax for GitHub Actions

16.8.10 Display badge

Now you can add a badge of your CI status to your README.rst file, for example with:

.. image:: https://github.com/YOU/YOUR_PROJECT/workflows/CI/badge.svg?branch=main
:target: https://github.com/YOU/YOUR_PROJECT/actions?workflow=CI
:alt: CI Status

16.8.11 Publish test coverage

You can publish the test coverage on GitHub, see also Coverage GitHub-Actions.

16.8.12 Extend tox

tox uses pluggy to customise the default behaviour. Pluggy finds a plugin by searching for an entry point with the name
tox, for example in a pyproject.toml file:

[project.entry-points.tox]
my_plugin = "my_plugin.hooks"

To use the plugin, it therefore only needs to be installed in the same environment in which tox is running and it is found
via the defined entry point.

A plugin is created by implementing extension points in the form of hooks. For example, the following code snippet
would define a new --my CLI:

from tox.config.cli.parser import ToxParser
from tox.plugin import impl

@impl
def tox_add_option(parser: ToxParser) -> None:

parser.add_argument("--my", action="store_true", help="my option")

See also:
• Extending tox

244 Chapter 16. Testing

https://docs.github.com/en/actions/using-workflows/workflow-syntax-for-github-actions
https://pluggy.readthedocs.io/en/stable/
https://tox.readthedocs.io/en/latest/plugins.html

Python basics, Release 24.1.0

16.8. tox 245

Python basics, Release 24.1.0

• tox development team

16.9 unittest2

unittest2 is a backport of unittest, with improved API and assertions than in previous Python versions.

16.9.1 Example

You may want to import the module under the name unittest to make it easier to port code to newer versions of the
module in the future:

import unittest2 as unittest

class MyTest(unittest.TestCase):
...

This way, if you switch to a newer Python version and no longer need the unittest2 module, you can simply change
the import in your test module without having to change any further code.

16.9.2 Installation

$ bin/python -m pip install unittest2

C:> Scripts\python -m pip install unittest2

16.10 Glossary

assert
A keyword that stops code execution if its argument is false.

Continuous integration
CI

Automatic checking of the creation and test process on different platforms.

Dummy
Object that is passed around but never actually used. Normally they are only used to fill parameter lists.

exception
Customisable form of assert.

except
Keyword used to catch an exception and handle it carefully.

Fake
Object that has an actual working implementation, but usually takes a shortcut that makes it unsuitable for pro-
duction.

Integration test
Tests that verify that the different parts of the software work together as expected.

246 Chapter 16. Testing

https://github.com/orgs/tox-dev/repositories
https://pypi.org/project/unittest2/
https://docs.python.org/3/library/unittest.html#module-unittest

Python basics, Release 24.1.0

Mock
Objects that are programmed with exception that form a specification of the calls you are likely to receive.

See also:
• Mock object

pytest
A Python package with test utilities.

Regression test
Test to protect against new errors or regressions that can occur due to new software and updates.

Stubs
provide ready-made responses to calls made during the test and usually do not respond at all to anything that has
not been programmed for the test.

Test-driven development
TDD

A software development strategy in which the tests are written before the code.

try
A keyword that protects a part of the code that can trigger an exception.

16.10. Glossary 247

https://en.wikipedia.org/wiki/Mock_object

Python basics, Release 24.1.0

248 Chapter 16. Testing

CHAPTER

SEVENTEEN

DOCUMENT

In order for your software package to be useful, documentation is required that describes how your software can be
installed, operated, used and improved:

• Those who want to use your package need information,

– what problems your software solves and what the main features and limitations of the software are (README)

– how the software can be used as an example

– what changes have come in more recent software versions (CHANGELOG)

• Those who want to run the software need an installation guide for your software and the required dependencies.

• Those who want to improve the software need information about

– how to help improve the product with bug fixes (CONTRIBUTING)

– how to communicate with others (CODE_OF_CONDUCT)

All together need information on how the product is licensed (LICENSE file or LICENSES folder) and how to get help
if needed.

See also:
• Eric Holscher: Why You Shouldn’t Use “Markdown” for Documentation

• Tom Johnson: 10 reasons for moving away from DITA

• Tom Johnson: Jekyll versus DITA

• Google developer documentation style guide

• Google Technical Writing Courses for Engineers

17.1 Create a Sphinx project

17.1.1 Installation and start

1. Create a virtual environment for your documentation project:

$ python3 -m venv venv

C:> python -m venv venv

2. Switch to the virtual environment and install Sphinx there:

249

https://ericholscher.com/blog/2016/mar/15/dont-use-markdown-for-technical-docs/
https://idratherbewriting.com/2015/01/28/10-reasons-for-moving-away-from-dita/
https://idratherbewriting.com/2015/03/23/new-series-jekyll-versus-dita/
https://developers.google.com/style/
https://developers.google.com/tech-writing/overview

Python basics, Release 24.1.0

$ cd !$
cd venv
$ bin/python -m pip install sphinx
Creating a virtualenv for this project...
...

C:> cd venv
C:> bin/python -m pip install sphinx
Creating a virtualenv for this project...
...

3. Create your Sphinx documentation project:

$ bin/sphinx-quickstart docs
Selected root path: docs
> Separate source and build directories (y/n) [n]:
> Name prefix for templates and static dir [_]:
> Project name: my.package
> Author name(s): Veit Schiele
> Project release []: 1.0
> Project language [en]:
> Source file suffix [.rst]:
> Name of your master document (without suffix) [index]:
> autodoc: automatically insert docstrings from modules (y/n) [n]: y
> doctest: automatically test code snippets in doctest blocks (y/n) [n]: y
> intersphinx: link between Sphinx documentation of different projects (y/n) [n]: y
> todo: write "todo" entries that can be shown or hidden on build (y/n) [n]: y
> coverage: checks for documentation coverage (y/n) [n]:
> imgmath: include math, rendered as PNG or SVG images (y/n) [n]:
> mathjax: include math, rendered in the browser by MathJax (y/n) [n]:
> ifconfig: conditional inclusion of content based on config values (y/n) [n]:
> viewcode: include links to the source code of documented Python objects (y/n)␣
→˓[n]: y
> githubpages: create .nojekyll file to publish the document on GitHub pages (y/n)␣
→˓[n]:
> Create Makefile? (y/n) [y]:
> Create Windows command file? (y/n) [y]:

Creating file docs/source/conf.py.
Creating file docs/source/index.rst.
Creating file docs/Makefile.
Creating file docs/make.bat.

C:> Scripts\sphinx-quickstart docs
Selected root path: docs
> Separate source and build directories (y/n) [n]:
> Name prefix for templates and static dir [_]:
> Project name: my.package
> Author name(s): Veit Schiele
> Project release []: 1.0
> Project language [en]:
> Source file suffix [.rst]:

(continues on next page)

250 Chapter 17. Document

Python basics, Release 24.1.0

(continued from previous page)

> Name of your master document (without suffix) [index]:
> autodoc: automatically insert docstrings from modules (y/n) [n]: y
> doctest: automatically test code snippets in doctest blocks (y/n) [n]: y
> intersphinx: link between Sphinx documentation of different projects (y/n) [n]: y
> todo: write "todo" entries that can be shown or hidden on build (y/n) [n]: y
> coverage: checks for documentation coverage (y/n) [n]:
> imgmath: include math, rendered as PNG or SVG images (y/n) [n]:
> mathjax: include math, rendered in the browser by MathJax (y/n) [n]:
> ifconfig: conditional inclusion of content based on config values (y/n) [n]:
> viewcode: include links to the source code of documented Python objects (y/n)␣
→˓[n]: y
> githubpages: create .nojekyll file to publish the document on GitHub pages (y/n)␣
→˓[n]:
> Create Makefile? (y/n) [y]:
> Create Windows command file? (y/n) [y]:

Creating file docs\conf.py.
Creating file docs\index.rst.
Creating file docs\Makefile.
Creating file docs\make.bat.

17.1.2 Sphinx layout

venv
docs

Makefile
_static
_templates
conf.py
index.rst
make.bat

index.rst is the initial file for the documentation, in which the table of contents is located. The table of contents will
be expanded by you as soon as you add new *.rst files.

17.1.3 Generate the documentation

You can now generate the documentation, for example with:

$ bin/sphinx-build -ab html docs/ docs/_build

C:> Scripts\sphinx-build -ab html docs\ docs_build

a
regenerates all pages of the documentation.

Note: This is always useful if you have added new pages to your documentation. to your documentation.

17.1. Create a Sphinx project 251

Python basics, Release 24.1.0

b
specifies which builder should be used to generate the documentation. In our example this is html.

17.2 reStructuredText

See also:
• reStructuredText Primer

• reStructuredText Quick Reference

17.2.1 Headlines

Underline the title with punctuation marks
==

Change the punctuation mark for subtitles

17.2.2 Paragraphs

A paragraph consists of one or more lines of non-indented text, separated from the material above and below by blank
lines.

A paragraph consists of one or more lines of non-indented text, separated
from the material above and below by blank lines.

17.2.3 Inline markup

Italic, bold and preformatted

Italic, **bold** and ``preformatted``

17.2.4 Links

External links

hyperlink link

`hyperlink <http://en.wikipedia.org/wiki/Hyperlink>`_ `link`_

.. _link: http://en.wikipedia.org/wiki/Link_(The_Legend_of_Zelda)

Note: A directive starting with .. must always be preceded by a blank line.

252 Chapter 17. Document

https://www.sphinx-doc.org/en/master/usage/restructuredtext/basics.html
https://docutils.sourceforge.io/docs/user/rst/quickref.html
http://en.wikipedia.org/wiki/Hyperlink
http://en.wikipedia.org/wiki/Link_(The_Legend_of_Zelda)

Python basics, Release 24.1.0

Internal links

Cross-referencing locations

Section to reference

To refer to the section, use Section to reference.

.. _my-reference-label:

Section to reference
....................

To refer to the section, use :ref:`my-reference-label`.

Referencing documents

Link to start page or Docstrings.

Link to :doc:`start page <../index>` or :doc:`docstrings`.

Download documents

Link to a document, not rendered by Sphinx, for example docstrings-example.rst.

Link to a document, not rendered by Sphinx, for example
:download:`docstrings-example.rst`.

17.2.5 Images

.. image:: uml/activity-diagram.svg

Other semantic markup

File listing

/Users/NAME/python-basics

:file:`/Users/{NAME}/python-basics`

17.2. reStructuredText 253

Python basics, Release 24.1.0

Menu selections and GUI labels

1. File → Save as . . .

2. Submit

#. :menuselection:`File --> Save as ...`
#. :guilabel:`&Submit`

17.2.6 Lists

17.2.7 Numbered lists

1. First

2. Second

3. Third

#. First
#. Second
#. Third

Unnumbered lists

• Each entry in a list begins with an Asterisk (*).

• List items can be displayed for multiple lines as long as the list items remain indented.

* Each entry in a list begins with an Asterisk (``*``).
* List items can be displayed for multiple lines as long as the list items
remain indented.

Definition lists

Term
Definition of the term

Different term
. . . and its definition

Term
Definition of the term

Different term
...and its definition

254 Chapter 17. Document

Python basics, Release 24.1.0

17.2.8 Nested lists

• Lists can also be nested

– and contain subitems

* Lists can also be nested

* and contain subitems

17.2.9 Literal blocks

«Block quotation marks look like paragraphs, but are indented with one or more spaces.»

«Block quotation marks look like paragraphs, but are indented with one
or more spaces.»

17.2.10 Line blocks

Because of the pipe character, this becomes one line.
And this will be another line.

| Because of the pipe character, this becomes one line.
| And this will be another line.

17.2.11 Code blocks

Blocks of code are introduced and indented with a colon:

import docutils
print help(docutils)

>>> print 'But doctests start with ">>>" and don’t need to be indented.'

Blocks of code are introduced and indented with a colon::

import docutils
print help(docutils)

>>> print 'But doctests start with ">>>" and don’t need to be indented.'

See also:
Code blocks

17.2. reStructuredText 255

Python basics, Release 24.1.0

17.2.12 Tables

Column heading Column heading Column heading Column heading
body row 1, column 1 body row 1, column 2 body row 1, column 3 body row 1, column 4
body row 2, column 1 body row 2, column 2 body row 2, column 3, colspan 2
body row 3, column 1 body row 3, column 2 body row 3, column 3, rowspan 2 body row 4, column 4
body row 5, column 1 body row 5, column 2 body row 5, column 4

+----------------+----------------+----------------+----------------+
| Column heading | Column heading | Column heading | Column heading |
+================+================+================+================+
| body row 1, | body row 1, | body row 1, | body row 1, |
| column 1 | column 2 | column 3 | column 4 |
+----------------+----------------+----------------+----------------+
| body row 2, | body row 2, | body row 2, |
| column 1 | column 2 | column 3, colspan 2 |
+----------------+----------------+----------------+----------------+
| body row 3, | body row 3, | body row 3, | body row 4, |
| column 1 | column 2 | column 3, | column 4 |
+----------------+----------------+ rowspan 2 +----------------+
| body row 5, | body row 5, | | body row 5, |
| column 1 | column 2 | | column 4 |
+----------------+----------------+----------------+----------------+

17.2.13 Comments

.. A comment block begins with two points and can be indented further

17.3 Code blocks

Code blocks can be easily represented with the code-block directive. Together with Pygments, Sphinx will automat-
ically highlight the syntax. You can specify the appropriate language for a code block with

.. code-block:: LANGUAGE

You can use this for example like this:

.. code-block:: python

import this

256 Chapter 17. Document

http://pygments.org/

Python basics, Release 24.1.0

Optionen

:linenos:

For code-block , the linenos option can also be used to specify that the code block should be displayed
with line numbers:

.. code-block:: python
:linenos:

import this

1 import this

:lineno-start:

Die erste Zeilennummer kann mit der lineno-start-Option ausgewählt werden; linenos wird dann
automatisch aktiviert: The first line number can be selected with the lineno-start option; linenos will
then be activated automatically:

.. code-block:: python
:lineno-start: 10

import antigravity

10 import antigravity

:emphasize-lines:

emphasize-lines allows you to emphasise individual lines.

.. literalinclude:: FILENAME

allows you to include external files.

Options

:emphasize-lines:

:linenos:

Here is an example from our Jupyter Tutorial:

.. literalinclude:: main.py
:emphasize-lines: 4, 9-12, 20-22
:linenos:

1 from typing import Optional
2

3 from fastapi import FastAPI
4 from pydantic import BaseModel
5

6 app = FastAPI()
7

8

9 class Item(BaseModel):
10 name: str

(continues on next page)

17.3. Code blocks 257

https://jupyter-tutorial.readthedocs.io/en/latest/index.html

Python basics, Release 24.1.0

(continued from previous page)

11 price: float
12 is_offer: Optional[bool] = None
13

14

15 @app.get("/")
16 def read_root():
17 return {"Hello": "World"}
18

19

20 @app.get("/items/{item_id}")
21 def read_item(item_id: int, q: Optional[str] = None):
22 return {"item_id": item_id, "q": q}
23

24

25 @app.put("/items/{item_id}")
26 def update_item(item_id: int, item: Item):
27 return {"item_name": item.name, "item_id": item_id}

:diff:

If you want to show the diff of your code, you can specify the old file with the diff option, for example:

.. literalinclude:: main.py
:diff: main.py.orig

--- /home/docs/checkouts/readthedocs.org/user_builds/python-basics-tutorial/
→˓checkouts/24.1.0/docs/document/main.py.orig
+++ /home/docs/checkouts/readthedocs.org/user_builds/python-basics-tutorial/
→˓checkouts/24.1.0/docs/document/main.py
@@ -1,8 +1,15 @@
from typing import Optional

from fastapi import FastAPI
+from pydantic import BaseModel

app = FastAPI()
+
+
+class Item(BaseModel):
+ name: str
+ price: float
+ is_offer: Optional[bool] = None

@app.get("/")
@@ -13,3 +20,8 @@
@app.get("/items/{item_id}")
def read_item(item_id: int, q: Optional[str] = None):

return {"item_id": item_id, "q": q}
+
+
+@app.put("/items/{item_id}")
+def update_item(item_id: int, item: Item):

(continues on next page)

258 Chapter 17. Document

Python basics, Release 24.1.0

(continued from previous page)

+ return {"item_name": item.name, "item_id": item_id}

17.3.1 Obsolete code

.. deprecated:: version

Describes when the function became obsolete. An explanation can also be given to inform what should be used
instead. For example

.. deprecated:: 4.1
instead use :func:`new_function`.

Deprecated since version 4.1: instead use new_function().

:py:module:deprecated:

Marks a Python module as obsolete; it is then marked as such in various places.

17.4 Placeholder

Sphinx distinguishes the following placeholder variables:

:envvar:

Environment variable that also creates a reference to the appropriate envvar directive if it exists.

:file:

The name of a file or directory. Curly brackets can be used to specify a variable part, for example:

... is installed in :file:`/usr/lib/python3.{x}/site-packages` ...

In the generated HTML documentation, the x is specially marked with em .pre and italicised to show that it is to be
replaced by the specific Python version.

:makevar:

The name of a make variable

:samp:

Text example, such as code within which curly braces can be used to indicate a variable part, as in file or in
print 1+VARIABLE.

As of Sphinx1.8, curly braces can be displayed with a backslash (\).

Note:
:content:

This role has no special meaning by default. You can therefore use it for anything, for example also for variable names.

See also:
• Sphinx awesome sampdirective

17.4. Placeholder 259

https://github.com/kai687/sphinxawesome-sampdirective

Python basics, Release 24.1.0

17.5 UI elements and interactions

:guilabel:

Labels that are presented as part of an interactive user interface should be marked with guilabel. Any label
used in the interface should be identified with this role, including labels for buttons, window titles, field names,
menu and menu selection names, and even values in selection lists.

A keyboard shortcut for GUI labelling can be inserted with an ampersand (&); this will underline the following
letter in the output.

Cancel is achieved, for example, with the following distinction:

:guilabel:`&Cancel`

Note: If you want to insert an ampersand, you can simply double it.

:kbd:

This represents a sequence of keystrokes. The form of the key sequence may depend on platform- or application-
specific conventions. If there are no corresponding conventions, the names of modifier keys should be written
out to improve accessibility. Also, do not reference a specific keyboard label.

You can achieve Ctrl-s, for example, with the following markup:

:kbd:`Ctrl-s`

:menuselection:

A menu selection should be marked with the menuselection role. This is used to mark a complete sequence,
including submenu selections and selections of specific operations or any subsequences. The names of the indi-
vidual selections should be separated by -->.

View → Cell Toolba r→ Slideshow is achieved, for example, with the following markup:

:menuselection:`View --> Cell Toolbar --> Slideshow`

menuselection, just like guilabel, also supports keyboard shortcuts with an ampersand (&).

17.6 Directives

reStructuredText can be expanded with Directives. Sphinx makes extensive use of this. Here are some examples:

17.6.1 Table of Contents

Docstrings

With the Sphinx extension sphinx.ext.autodoc, docstrings can also be included in the documentation. The following
three directives can be specified:

.. automodule::

.. autoclass::

.. autoexception::

These document a module, a class or an exception using the docstring of the respective object.

260 Chapter 17. Document

https://docutils.sourceforge.io/docs/ref/rst/directives.html
https://www.sphinx-doc.org/en/master/usage/extensions/autodoc.html

Python basics, Release 24.1.0

Installation

sphinx.ext.autodoc is usually already specified in the Sphinx configuration file docs/conf.py:

extensions = [
'sphinx.ext.autodoc',
...

]

If your package and its documentation are part of the same repository, they will always have the same relative position
in the filesystem. In this case you can simply edit the Sphinx configuration for sys.path to indicate the relative path
to the package, so:

sys.path.insert(0, os.path.abspath('..'))
import requests

If you have installed your Sphinx documentation in a virtual environment, you can also install your package there with:

$ python -m pip install my.package

or, if you want to develop the package further with:

$ python -m pip install -e https://github.com/veit/my.package.git

Examples

Here are some examples from the API documentation for the requests module:

Docstrings example
==================

Developer Interface

.. module:: requests

Main Interface

.. autofunction:: head

Exceptions

.. autoexception:: requests.RequestException

Request Sessions

.. autoclass:: Session
:inherited-members:

This leads to the docstrings-example, generated from the following docstrings:

17.6. Directives 261

https://docs.python-requests.org

Python basics, Release 24.1.0

• requests.head

• requests.RequestException

• requests.Session

Note: You should follow these guidelines when writing docstrings:

• PEP 8#comments
• PEP 257#specification

sphinx-autodoc-typehints

With PEP 484 a standard method for expressing types in Python code was introduced. This also allows types to be
expressed differently in docstrings. The variant with types according to PEP 484 has the advantage that type testers
and IDEs can be used for static code analysis.

Python 3 type annotations:

def func(arg1: int, arg2: str) -> bool:
"""Summary line.

Extended description of function.

Args:
arg1: Description of arg1
arg2: Description of arg2

Returns:
Description of return value

"""
return True

Types in Docstrings:

def func(arg1, arg2):
"""Summary line.

Extended description of function.

Args:
arg1 (int): Description of arg1
arg2 (str): Description of arg2

Returns:
bool: Description of return value

"""
return True

Note:

262 Chapter 17. Document

https://docs.python-requests.org/en/master/_modules/requests/api/#head
https://docs.python-requests.org/en/master/_modules/requests/exceptions/#RequestException
https://docs.python-requests.org/en/master/_modules/requests/sessions/#Session
https://peps.python.org/pep-0008/#comments
https://peps.python.org/pep-0257/#specification
https://peps.python.org/pep-0484/
https://peps.python.org/pep-0484/

Python basics, Release 24.1.0

PEP 484#suggested-syntax-for-python-2-7-and-straddling-code are currently
not supported by Sphinx and do not appear in the generated documentation.

sphinx.ext.napoleon

The sphinx extension sphinx.ext.napoleon allows you to define different sections in docstrings, including:

• Attributes

• Example

• Keyword Arguments

• Methods

• Parameters

• Warning

• Yield

There are two styles of docstrings in sphinx.ext.napoleon:

• Google

• NumPy

The main differences are that Google uses indentations and NumPy uses underscores:

Google:

def func(arg1, arg2):
"""Summary line.

Extended description of function.

Args:
arg1 (int): Description of arg1
arg2 (str): Description of arg2

Returns:
bool: Description of return value

"""
return True

NumPy:

def func(arg1, arg2):
"""Summary line.

Extended description of function.

Parameters

arg1 : int

Description of arg1
arg2 : str

(continues on next page)

17.6. Directives 263

https://peps.python.org/pep-0484/#suggested-syntax-for-python-2-7-and-straddling-code
https://sphinxcontrib-napoleon.readthedocs.io/
https://sphinxcontrib-napoleon.readthedocs.io/en/latest/example_google.html
https://sphinxcontrib-napoleon.readthedocs.io/en/latest/example_numpy.html

Python basics, Release 24.1.0

(continued from previous page)

Description of arg2

Returns

bool

Description of return value

"""
return True

You can find the detailed configuration options in sphinxcontrib.napoleon.Config.

.. toctree::
:maxdepth: 2

start
docstrings

Meta information

Section author: Veit Schiele <veit@cusy.io>

Code author: Veit Schiele <veit@cusy.io>

.. sectionauthor:: Veit Schiele <veit@cusy.io>

.. codeauthor:: Veit Schiele <veit@cusy.io>

Note: By default, this information is not included in the output until you set the configuration for show_authors to
True.

See also

See also:
Sphinx Directives

.. seealso::
`Sphinx Directives
<https://www.sphinx-doc.org/en/master/usage/restructuredtext/directives.html>`_

264 Chapter 17. Document

https://sphinxcontrib-napoleon.readthedocs.io/en/latest/sphinxcontrib.napoleon.html#sphinxcontrib.napoleon.Config
mailto:veit@cusy.io
mailto:veit@cusy.io
https://www.sphinx-doc.org/en/master/usage/restructuredtext/directives.html

Python basics, Release 24.1.0

Glossary

environment
A structure where information about all documents under the root is saved, and used for cross-referencing. The
environment is pickled after the parsing stage, so that successive runs only need to read and parse new and
changed documents.

source directory
The directory which, including its subdirectories, contains all source files for one Sphinx project.

.. glossary::

environment
A structure where information about all documents under the root is
saved, and used for cross-referencing. The environment is pickled
after the parsing stage, so that successive runs only need to read
and parse new and changed documents.

source directory
The directory which, including its subdirectories, contains all
source files for one Sphinx project.

17.7 Intersphinx

sphinx.ext.intersphinx allows the linking of other project documentation.

17.7.1 Configuration

In docs/conf.py Intersphinx must be indicated as an extension:

extensions = [
...
'sphinx.ext.intersphinx',
]

External Sphinx documentation can then be specified, e.g. with:

intersphinx_mapping = {
'python': ('https://docs.python.org/3', None),
'bokeh': ('https://bokeh.pydata.org/en/latest/', None)

}

However, alternative files can also be specified for an inventory, for example:

intersphinx_mapping = {
'python': ('https://docs.python.org/3', (None, 'python-inv.txt'),
...

}

17.7. Intersphinx 265

http://www.sphinx-doc.org/en/master/usage/extensions/intersphinx.html

Python basics, Release 24.1.0

17.7.2 Determine link targets

To determine the links available in an inventory, you can enter the following, for example:

$ python -m sphinx.ext.intersphinx https://docs.python.org/3/objects.inv
c:function

PyAnySet_Check c-api/set.html#c.PyAnySet_Check
PyAnySet_CheckExact c-api/set.html#c.PyAnySet_CheckExact
PyArg_Parse c-api/arg.html#c.PyArg_Parse

...

17.7.3 Create a link

In order to link to https://docs.python.org/3/c-api/arg.html#c.PyArg_Parse, one of the following variants can be spec-
ified:

PyArg_Parse()

:c:func:`PyArg_Parse`

PyArg_Parse()

:c:func:`!PyArg_Parse`

Parsing arguments

:c:func:`Parsing arguments <PyArg_Parse>`

17.7.4 Custom links

You can also create your own intersphinx assignments, e.g. if objects.inv in Beautiful Soup has errors.

The error can be corrected with:

1. Installation of sphobjinv:

$ python -m pip install sphobjinv

2. Then the original file can be downloaded with:

$ cd docs/build/
$ mkdir _intersphinx
$!$
$ curl -O https://www.crummy.com/software/BeautifulSoup/bs4/doc/objects.inv
$ mv objects.inv bs4_objects.inv

3. Change the Sphinx configuration docs/conf.py:

intersphinx_mapping = {
...
'bs4': ('https://www.crummy.com/software/BeautifulSoup/bs4/doc/', "_

→˓intersphinx/bs4_objects.inv")
}

266 Chapter 17. Document

https://docs.python.org/3/c-api/arg.html#c.PyArg_Parse
https://docs.python.org/3/c-api/arg.html#c.PyArg_Parse
https://docs.python.org/3/c-api/arg.html#c.PyArg_Parse
https://bugs.launchpad.net/beautifulsoup/+bug/1453370

Python basics, Release 24.1.0

4. Convert to a text file:

$ sphobjinv convert plain bs4_objects.inv bs4_objects.txt

5. Editing the text file

e.g.:

bs4.BeautifulSoup py:class 1 index.html#beautifulsoup -
bs4.BeautifulSoup.get_text py:method 1 index.html#get-text -
bs4.element.Tag py:class 1 index.html#tag -

These entries can then be referenced in a Sphinx documentation with:

- :class:`bs4.BeautifulSoup`
- :meth:`bs4.BeautifulSoup.get_text`
- :class:`bs4.element.Tag`

See also:
• Sphinx objects.inv v2 Syntax

6. Create a new objects.inv file:

$ sphobjinv convert zlib bs4_objects.txt bs4_objects.txt

7. Create Sphinx documentation:

$ python -m sphinx -ab html docs/ docs/_build/

17.7.5 Add roles

If you get an error message that a certain text role is unknown, e.g.

WARNING: Unknown interpreted text role "confval".

so you can add them in the conf.py:

def setup(app):
from sphinx.ext.autodoc import cut_lines
app.connect('autodoc-process-docstring', cut_lines(4, what=['module']))
app.add_object_type(

"confval",
"confval",
objname="configuration value",
indextemplate="pair: %s; configuration value",

)

17.7. Intersphinx 267

https://sphobjinv.readthedocs.io/en/latest/syntax.html

Python basics, Release 24.1.0

17.8 Unified Modeling Language (UML)

17.8.1 Installation

1. Install plantuml:

$ sudo apt install plantuml

$ brew install plantuml

2. Install sphinxcontrib-plantuml:

$ bin/python -m pip install sphinxcontrib-plantuml

C:> Scripts\python -m pip install sphinxcontrib-plantuml

3. We then configure the conf.py:

extensions = [
...,
'sphinxcontrib.plantuml',
]

plantuml = '/PATH/TO/PLANTUML'

Note: Also in Windows, the path is specified with /.

Sequence diagram

.. uml::

Browser -> Server: Authentication Request
Server --> Browser: Authentication Response

(continues on next page)

268 Chapter 17. Document

https://plantuml.com/starting
https://pypi.org/project/sphinxcontrib-plantuml/

Python basics, Release 24.1.0

(continued from previous page)

Browser -> Server: Another authentication Request
Browser <-- Server: another authentication Response

->
is used to draw a message between two actors. The actors do not have to be declared explicitly.

-->
is used to draw a dotted line.

<- and <--
do not change the drawing, but may increase readability.

Note: This applies only to sequence diagrams. In other diagrams other rules may apply.

Use Case diagram

.. uml::

:User: --> (Use)
"Group of\nAdministrators " as Admin
"Using the\napplication" as (Use)
Admin --> (Administering\nthe Application)

Use cases are enclosed by round brackets () and resemble an oval.

Alternatively, the usecase keyword can be used to define a use case. In addition, it is possible to define an alias using
the as keyword. This alias can then be used when defining relationships.

You can add line breaks to the name of the use cases with \n.

17.8. Unified Modeling Language (UML) 269

Python basics, Release 24.1.0

Activity diagram

(*)
Start and end nodes of the activity diagram.

(*top)
In some cases, this can be used to move the start point to the beginning of the diagram.

-->
defines an activity

-down->
Down arrow (default value)

-right-> or ->
Right arrow

-left->
Arrow to the left

-up->
Arrow up

if, then, else
Keywords for the definition of branches.

Example:

.. uml::

(*) --> "Initialisation"
if "a test" then
-->[true] "An activity"
--> "Another activity"
-right-> (*)
else
->[false] "Something else"
-->[end the processes] (*)
endif

fork, fork again and end fork or end merge
Keywords for parallel processing.

Example:

.. uml::

start
fork
:action 1;

fork again
:action 2;

end fork
stop

270 Chapter 17. Document

Python basics, Release 24.1.0

Class diagram

abstract class, abstract

Example:

.. uml::

abstract class "Abstract class"

annotation

.. uml::

annotation Annotation

circle, ()

.. uml::

circle Circle

class

.. uml::

class Class

diamond, <>
An empty diamond stands for an association, a black diamond for a composition.

.. uml::

diamond Association

entity

.. uml::

entity Entity

enum

.. uml::

enum Enumeration

interface

.. uml::

interface Interface

17.8. Unified Modeling Language (UML) 271

Python basics, Release 24.1.0

17.9 Extensions

See also:
Sphinx Extensions

17.9.1 Built-in extensions

sphinx.ext.autodoc
Integrate documentation from docstrings

sphinx.ext.autosummary
generates summaries of functions, methods and attributes from docstrings

sphinx.ext.autosectionlabel
references section using the title

sphinx.ext.graphviz
Rendering of Graphviz graphs

sphinx.ext.ifconfig
includes content only under certain conditions

sphinx.ext.intersphinx
allows the linking of other project documentation

sphinx.ext.mathjax
Rendering via JavaScript

sphinx.ext.napoleon
Support for NumPy and Google style docstrings

sphinx.ext.todo
Support for ToDo items

sphinx.ext.viewcode
adds links to the source code of the Sphinx documentation

See also:
sphinx/sphinx/ext/

17.9.2 Third-party extensions

nbsphinx
Jupyter Notebooks in Sphinx

jupyter-sphinx
allows rendering of Jupyter interactive widgets in Sphinx.

See also:
Embedding Widgets in the Sphinx HTML Documentation

Breathe
ReStructuredText and Sphinx bridge to Doxygen

numpydoc
NumPy’s Sphinx extension

272 Chapter 17. Document

https://www.sphinx-doc.org/en/master/usage/extensions/index.html
https://www.sphinx-doc.org/en/master/usage/extensions/autodoc.html
https://www.sphinx-doc.org/en/master/usage/extensions/autosummary.html
https://www.sphinx-doc.org/en/master/usage/extensions/autosectionlabel.html
https://www.sphinx-doc.org/en/master/usage/extensions/graphviz.html
https://www.graphviz.org/
https://www.sphinx-doc.org/en/master/usage/extensions/ifconfig.html
https://www.sphinx-doc.org/en/master/usage/extensions/intersphinx.html
https://www.sphinx-doc.org/en/master/usage/extensions/math.html#module-sphinx.ext.mathjax
https://www.sphinx-doc.org/en/master/usage/extensions/napoleon.html
https://www.sphinx-doc.org/en/master/usage/extensions/todo.html
https://www.sphinx-doc.org/en/master/usage/extensions/viewcode.html
https://github.com/sphinx-doc/sphinx/tree/master/sphinx/ext
https://nbsphinx.readthedocs.io/
https://github.com/jupyter-widgets/jupyter-sphinx
https://ipywidgets.readthedocs.io/en/latest/embedding.html#embedding-widgets-in-the-sphinx-html-documentation
https://github.com/breathe-doc/breathe
https://www.doxygen.nl
https://github.com/numpy/numpydoc
NumPy

Python basics, Release 24.1.0

Releases
writes a changelog file

sphinxcontrib-napoleon
Napoleon is a pre-processor for parsing NumPy- and Google-style docstrings

sphinx-autodoc-annotation
use Python 3 annotations in sphinx-enabled docstrings

sphinx-autodoc-typehints
Type hints support for the Sphinx autodoc extension

sphinx-git
git-Changelog for Sphinx

Sphinx Gitstamp Generator Extension
inserts a git datestamp into the context

sphinx-intl
Sphinx extension for translations

sphinx-autobuild
monitors a Sphinx repository and creates new documentation as soon as changes are made

Sphinx-Needs
allows the definition, linking and filtering of need-objects, for example requirements and test cases

Sphinx-pyreverse
generate a UML diagram from python modules

sphinx-jsonschema
display a JSON Schema in the Sphinx documentation

Sphinxcontrib-mermaid
allows you to embed Mermaid graphics in your documents.

Sphinx Sitemap Generator Extension
generate multiversion and multilanguage sitemaps for the HTML version

Sphinx Lint
based on rstlint.py from CPython.

sphinx-toolbox
Toolbox for Sphinx with many useful tools.

See also:
sphinx-contrib

A repository of Sphinx extensions maintained by their respective authors.

sphinx-extensions
Curated site with Sphinx extensions with live examples and their configuration.

17.9. Extensions 273

https://github.com/bitprophet/releases
https://sphinxcontrib-napoleon.readthedocs.io/en/latest/
https://github.com/nicolashainaux/sphinx-autodoc-annotation
https://github.com/agronholm/sphinx-autodoc-typehints
https://sphinx-git.readthedocs.io/en/latest/
https://git-scm.com/
https://github.com/jdillard/sphinx-gitstamp
https://pypi.python.org/pypi/sphinx-intl
https://github.com/GaretJax/sphinx-autobuild
https://sphinxcontrib-needs.readthedocs.io/en/latest/
https://github.com/alendit/sphinx-pyreverse
https://github.com/lnoor/sphinx-jsonschema
https://json-schema.org
https://github.com/mgaitan/sphinxcontrib-mermaid
https://github.com/jdillard/sphinx-sitemap
https://www.sitemaps.org/protocol.html
https://github.com/sphinx-contrib/sphinx-lint
https://github.com/python/cpython/blob/e0433c1e7/Doc/tools/rstlint.py
https://sphinx-toolbox.readthedocs.io/en/stable/index.html
https://github.com/sphinx-contrib/
https://sphinx-extensions.readthedocs.io/en/latest/

Python basics, Release 24.1.0

17.9.3 Own Extensions

Local extensions in a project should be specified relative to the documentation. The appropriate path is specified in the
Sphinx configuration docs/conf.py. If your extension is in the directory exts in the file foo.py, then the conf.py
should look like this:

import sys
import os
sys.path.insert(0, os.path.abspath('exts'))

extensions = [
'foo',
...
]

See also:
• Developing extensions for Sphinx

• Application API

17.10 Testing

17.10.1 Build error

You have the option of checking that your content is built correctly before publishing your changes. For this purpose,
Sphinx has a nitpicky mode that can be invoked with the -n option, for example with:

$ bin/python -m sphinx -nb html docs/ docs/_build/

C:> Scripts\python -m sphinx -nb html docs\ docs_build\

17.10.2 Check links

You can also automatically ensure that the link targets you specify are accessible. Sphinx uses a linkcheck builder for
this purpose, which you can call with:

$ bin/python -m sphinx -b linkcheck docs/ docs/_build/

C:> Scripts\python -m sphinx -b linkcheck docs\ docs_build\

The output may then look like this:

$ bin/python -m sphinx -b linkcheck docs/ docs/_build/
Running Sphinx v3.5.2
loading translations [de]... done
...
building [mo]: targets for 0 po files that are out of date
building [linkcheck]: targets for 27 source files that are out of date
...
(content/accessibility: line 89) ok https://bbc.github.io/subtitle-guidelines/

(continues on next page)

274 Chapter 17. Document

https://www.sphinx-doc.org/en/master/extdev/
https://www.sphinx-doc.org/en/master/extdev/appapi.html
https://www.sphinx-doc.org/

Python basics, Release 24.1.0

(continued from previous page)

(content/writing-style: line 164) ok http://disabilityinkidlit.com/2016/07/08/
→˓introduction-to-disability-terminology/

...
(index: line 5) redirect https://cusy-design-system.readthedocs.io/ - with Found␣
→˓to https://cusy-design-system.readthedocs.io/de/latest/
...
(accessibility/color: line 114) broken https://chrome.google.com/webstore/detail/
→˓nocoffee/jjeeggmbnhckmgdhmgdckeigabjfbddl - 404 Client Error: Not Found for url:␣
→˓https://chrome.google.com/webstore/detail/nocoffee/jjeeggmbnhckmgdhmgdckeigabjfbddl

C:> Scripts\python -m sphinx -b linkcheck docs\ docs_build\
Running Sphinx v3.5.2
loading translations [de]... done
...
building [mo]: targets for 0 po files that are out of date
building [linkcheck]: targets for 27 source files that are out of date
...
(content/accessibility: line 89) ok https://bbc.github.io/subtitle-guidelines/
(content/writing-style: line 164) ok http://disabilityinkidlit.com/2016/07/08/
→˓introduction-to-disability-terminology/

...
(index: line 5) redirect https://cusy-design-system.readthedocs.io/ - with Found␣
→˓to https://cusy-design-system.readthedocs.io/de/latest/
...
(accessibility/color: line 114) broken https://chrome.google.com/webstore/detail/
→˓nocoffee/jjeeggmbnhckmgdhmgdckeigabjfbddl - 404 Client Error: Not Found for url:␣
→˓https://chrome.google.com/webstore/detail/nocoffee/jjeeggmbnhckmgdhmgdckeigabjfbddl

Code formatting
blacken-docs currently supports the following black options:

• -l/--line-length

• -t/--target-version

• -s/--skip-string-normalization

• -E/--skip-errors

$ bin/python -m pip install blacken-docs

17.11 shot-scraper

shot-scraper is a tool to automate the process of updating screenshots.

17.11. shot-scraper 275

https://github.com/adamchainz/blacken-docs
https://github.com/psf/black
https://simonwillison.net/2022/Mar/10/shot-scraper/

Python basics, Release 24.1.0

17.11.1 Installation

$ python -m pip install shot-scraper
$ shot-scraper install

Note: The second line installs the required browser.

17.11.2 Use

shot-scraper can be used in two ways

1. . . . for single screenshots on the command line:

$ shot-scraper https://jupyter-tutorial.readthedocs.io/de/latest/clean-prep/index.
→˓html -o ~/Downloads/clean-prep.png

. . . or with additional options, e.g. for JavaScript and CSS selectors:

$ shot-scraper https://jupyter-tutorial.readthedocs.io/de/latest/clean-prep/
→˓index.html -s '#overview' -o ~/Downloads/clean-prep.png

2. . . . for a set of screenshots configured in a YAML file:

- url: https://jupyter-tutorial.readthedocs.io/de/latest/clean-prep/index.html
output: ~/Downloads/clean-prep.png

- url: https://www.example.org/
width: 736
quality: 40
output: example.jpg

Afterwards shot-scraper multi can be used, for example:

$ shot-scraper multi shots.yaml
Screenshot of 'https://jupyter-tutorial.readthedocs.io/de/latest/clean-prep/index.
→˓html' written to '~(Downloads/clean-prep.png'
Screenshot of 'https://www.example.org/' written to 'example.jpg'

See also:
• In the README.md file you will find a complete overview of the possible options.

• In the shot-scraper-demo repository you will find a much more comprehensive shots.yaml file.

276 Chapter 17. Document

https://github.com/simonw/shot-scraper/blob/main/README.md
https://github.com/simonw/shot-scraper-demo/blob/main/.github/workflows/shots.yml

Python basics, Release 24.1.0

17.11.3 GitHub Actions

shot-scraper can be easily integrated into GitHub Actions. The shot-scraper-demo repository also contains an exam-
plary shots.yml. Once a day, two screenshots are created and transferred back to the repository. Note, however, that
saving image files that change frequently can make the revision history very unreadable. Therefore, you should use
shot-scraper with caution together with GitHub Actions.

17.12 Badges

Some of this information and more can be accessed as badges. They are helpful in getting a quick overview of a product.
For the cookiecutter-namespace-template these are, for example:

You can also create your own badges, for example:

See also:
• shields.io

17.13 Sphinx

For extensive documentation you can, for example, use Sphinx, a documentation tool that converts reStructuredText
into HTML or PDF, EPub and man pages. The Python Basics are also created with Sphinx. To get a first impression
of Sphinx, you can have a look at the source code of this page by following the link Sources.

Originally, Sphinx was developed for the documentation of Python and is now used in almost all Python projects,
including NumPy and SciPy, Matplotlib, Pandas and SQLAlchemy.

The Sphinx autodoc feature, which can be used to create documentation from Python Docstrings, may also be conducive
to the spread of Sphinx among Python developers. Overall, Sphinx allows developers to create complete documentation
in place. Often the documentation is also stored in the same Git repository, so that the creation of the latest software
documentation remains easy.

Sphinx is also used in projects outside the Python community, e.g. for the documentation of the Linux kernel: Kernel
documentation update.

Read the Docs was developed to forther simplify documentation. Read the Docs makes it easy to create and publish
documentation after each commit.

For project documentation, visualising Git feature branches and tags with git-big-picture can be helpful.

Note: If the content of long_description in setup() is written in reStructured Text, it is displayed as well-
formatted HTML on ther Python Package Index (PyPI).

17.12. Badges 277

https://github.com/simonw/shot-scraper-demo/blob/main/.github/workflows/shots.yml
https://github.com/veit/cookiecutter-namespace-template
https://pepy.tech/project/cookiecutter-namespace-template
https://pyup.io/repos/github/veit/cookiecutter-namespace-template/
https://pypi.org/project/cookiecutter-namespace-template/
https://github.com/veit/cookiecutter-namespace-template/graphs/contributors
https://github.com/veit/cookiecutter-namespace-template/blob/main/LICENSE
https://cookiecutter-namespace-template.readthedocs.io/en/latest/
https://mastodon.social/@JupyterTutorial
https://shields.io
https://www.sphinx-doc.org/
../_sources/document/index.rst.txt
https://docs.scipy.org/doc/
https://matplotlib.org/users/index.html
https://pandas.pydata.org/docs/
https://docs.sqlalchemy.org/
http://www.sphinx-doc.org/en/master/usage/extensions/autodoc.html
https://www.python4data.science/en/latest/productive/git/index.html
https://lwn.net/Articles/705224/
https://lwn.net/Articles/705224/
https://readthedocs.org/
https://www.python4data.science/en/latest/productive/git/workflows/feature-branches.html
https://www.python4data.science/en/latest/productive/git/tag.html
https://www.python4data.science/en/latest/productive/git/advanced/git-big-picture.html

Python basics, Release 24.1.0

17.14 Other documentation tools

Pycco
is a Python port of Docco.

278 Chapter 17. Document

https://pycco-docs.github.io/pycco/
https://github.com/jashkenas/docco

CHAPTER

EIGHTEEN

APPENDIX

18.1 Regular expressions

See also:
• www.regular-expressions.info

• AutoRegex

18.1.1 []

Square brackets define a list or range of characters to search for:

[abc]
corresponds to a, b or c

[a-z]
corresponds to any lower case letter

[A-Za-z]
corresponds to each letter

[A-Za-z0-9]
corresponds to any letter or digit

18.1.2 Number

.
corresponds to a single character

*
corresponds to zero or more times the preceding element, for example colou*r matches color, colour,
colouur etc.

?
corresponds to zero or once the preceding element. colou?r matches color and colour.

+
matches the previous element one or more times, for example .+ matches ., .., ... etc.

{N}
corresponds N times to the preceding element.

{N,}
matches the previous element N or more times.

279

https://www.regular-expressions.info/
https://www.autoregex.xyz

Python basics, Release 24.1.0

{N,M}
corresponds at least N times to the preceding element, but not more than M times.

18.1.3 Position

^
puts the position at the beginning of the line.

$
puts the position at the end of the line.

18.1.4 Link

|
means or.

18.1.5 Escape characters and literals

\
is used to search for a special character, for example to find .org you have to use the regular expression \.org
because . is the special character that matches every character.

\d
matches every single digit.

\w
matches any part of a word character and is equivalent to [A-Za-z0-9].

\s
matches any space, tab or newline.

\b
matches a pattern on a word boundary.

18.2 Unicode and character encodings

There are dozens of character encodings. For an overview of Python’s encodings, see Encodings and Unicode.

18.2.1 The string module

Python’s string module distinguishes the following string constants, all of which fall into the ASCII character set:

Some strings for ctype-style character classification
whitespace = ' \t\n\r\v\f'
ascii_lowercase = 'abcdefghijklmnopqrstuvwxyz'
ascii_uppercase = 'ABCDEFGHIJKLMNOPQRSTUVWXYZ'
ascii_letters = ascii_lowercase + ascii_uppercase
digits = '0123456789'
hexdigits = digits + 'abcdef' + 'ABCDEF'
octdigits = '01234567'

(continues on next page)

280 Chapter 18. Appendix

https://docs.python.org/3/library/codecs.html#encodings-overview
https://docs.python.org/3/library/string.html

Python basics, Release 24.1.0

(continued from previous page)

punctuation = r"""!"#$%&'()*+,-./:;<=>?@[\]^_`{|}~"""
printable = digits + ascii_letters + punctuation + whitespace

Most of these constants should be self-explanatory in their identifier names. hexdigits and octdigits refer to the
hexadecimal and octal values respectively. You can use these constants for everyday string manipulation:

>>> import string
>>> hepy = "Hello Pythonistas!"
>>> hepy.rstrip(string.punctuation)
'Hello Pythonistas'

However, the string module works with Unicode by default, which is represented as binary data (bytes).

18.2.2 Unicode

It is obvious that the ASCII character set is not nearly large enough to cover all languages, dialects, symbols and glyphs;
it is not even large enough for English.

While ASCII is a complete subset of Unicode – the first 128 characters in the Unicode table correspond exactly to
ASCII characters – Unicode encompasses a much larger set of characters. Unicode itself is not an encoding but is
implemented by various character encodings, with UTF-8 probably being the most commonly used encoding scheme.

Note: The Python help documentation has an entry for Unicode: enter help() and then UNICODE. The various options
for creating Python strings are described in detail.

See also:
• Unicode HOWTO

• What’s New In Python 3.0: Text Vs. Data Instead Of Unicode Vs. 8-bit

Unicode and UTF-8

While Unicode is an abstract encoding standard, UTF-8 is a concrete encoding scheme. The Unicode standard is a
mapping of characters to code points and defines several different encodings from a single character set. UTF-8 is an
encoding scheme for representing Unicode characters as binary data with one or more bytes per character.

18.2.3 Encoding and decoding in Python 3

The str type is intended for the representation of human-readable text and can contain all Unicode characters. The bytes
type, on the other hand, represents binary data that is not inherently encoded. str.encode() and bytes.decode()
are the methods of transition from one to the other:

>>> "You’re welcome!".encode("utf-8")
b'You\xe2\x80\x99re welcome!'
>>> b"You\xe2\x80\x99re welcome!".decode("utf-8")
'You’re welcome!'

18.2. Unicode and character encodings 281

https://docs.python.org/3/library/string.html
https://docs.python.org/3/howto/unicode.html#unicode-howto
https://docs.python.org/3/whatsnew/3.0.html#text-vs-data-instead-of-unicode-vs-8-bit
https://docs.python.org/3/library/stdtypes.html#textseq
https://docs.python.org/3/library/stdtypes.html#typebytes
https://docs.python.org/3/library/stdtypes.html#str.encode
https://docs.python.org/3/library/stdtypes.html#bytes.decode

Python basics, Release 24.1.0

The result of str.encode() is a bytes object. Both byte literals (such as b'You\xe2\x80\x99re welcome!')
and representations of bytes only allow ASCII characters. For this reason, when calling "You’re welcome!".
encode("utf-8"), the ASCII-compatible 'You' may be represented as it is, but the ’ becomes '\xe2\x80\x99'.
This chaotic looking sequence represents three bytes, e2, 80 and 99 as hexadecimal values.

Tip: In .encode() and .decode(), the encoding parameter is "utf-8" by default; however, it is recommended to
specify it explicitly.

With bytes.fromhex() you can convert the hexadecimal values into bytes:

>>> bytes.fromhex('e2 80 99')
b'\xe2\x80\x99'

UTF-16 and UTF-32

The difference between these and UTF-8 is considerable in practice. In the following, I would like to show you only
briefly by means of an example that a round-trip conversion can simply fail here:

>>> hepy = "Hello Pythonistas!"
>>> hepy.encode("utf-8")
b'Hello Pythonistas!'
>>> len(hepy.encode("utf-8"))
18
>>> hepy.encode("utf-8").decode("utf-16")
'\u206f'
>>> len(hepy.encode("utf-8").decode("utf-16"))
9

Encoding Latin letters in UTF-8 and then decoding them in UTF-16 resulted in a text that also contains characters from
the Chinese, Japanese or Korean language areas as well as Roman numerals. Decoding the same byte object can lead
to results that are not even in the same language or contain the same number of characters.

18.2.4 Python 3 and Unicode

Python 3 relies fully on Unicode and specifically on UTF-8:

• Python 3 source code is assumed to be UTF-8 by default.

• Texts (str) are Unicode by default. Encoded Unicode text is represented as binary data (Bytes) dargestellt.

• Python 3 accepts many Unicode code points in identifiers.

• Python’s re module uses the re.UNICODE flag by default, not re.ASCII. This means that, for example, r"\w"
matches Unicode word characters, not just ASCII letters.

• The default encoding in str.encode() and bytes.decode() is UTF-8.

The only exception could be open(), which is platform dependent and therefore depends on the value of locale.
getpreferredencoding():

>>> import locale
>>> locale.getpreferredencoding()
'UTF-8'

282 Chapter 18. Appendix

https://docs.python.org/3/library/stdtypes.html#typebytes
https://unicode-table.com/en/2019/
https://docs.python.org/3/library/stdtypes.html#bytes.fromhex
https://docs.python.org/3/library/stdtypes.html#textseq
https://docs.python.org/3/library/stdtypes.html#typebytes
https://docs.python.org/3/reference/lexical_analysis.html#identifiers
https://docs.python.org/3/library/re.html
https://docs.python.org/3/library/functions.html#open
https://docs.python.org/3/library/locale.html#locale.getpreferredencoding
https://docs.python.org/3/library/locale.html#locale.getpreferredencoding

Python basics, Release 24.1.0

18.2.5 Built-in Python Functions

Python has a number of built-in functions that relate to character encodings in some way:

ascii(), bin(), hex(), oct()
output a string.

bytes, str, int
are class constructors for their respective types, converting the input to the desired type.

ord(), chr()
are inverses of each other in that the Python function ord() converts an str character to its base=10 code point,
while chr() does the opposite.

Below is a more detailed look at each of these nine functions:

Function RReturn type Description
ascii() str ASCII representation of an object, escaping non-ASCII characters.
bin() str binary representation of an integer with the prefix 0b
hex() str hexadecimal representation of an integer with the prefix 0x
oct() str octal representation of an integer with the prefix 0o
bytes bytes converts the input to bytes type
str str converts the input to str type
int int converts the input to int type
ord() int converts a single Unicode character to its integer code point
chr() str converts an integer code point into a single Unicode character

18.2. Unicode and character encodings 283

https://docs.python.org/3/library/functions.html#ascii
https://docs.python.org/3/library/functions.html#bin
https://docs.python.org/3/library/functions.html#hex
https://docs.python.org/3/library/functions.html#oct
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#ord
https://docs.python.org/3/library/functions.html#chr
https://docs.python.org/3/library/functions.html#ascii
https://docs.python.org/3/library/functions.html#bin
https://docs.python.org/3/library/functions.html#hex
https://docs.python.org/3/library/functions.html#oct
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/stdtypes.html#typebytes
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#textseq
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#ord
https://docs.python.org/3/library/functions.html#chr

Python basics, Release 24.1.0

284 Chapter 18. Appendix

INDEX

Symbols
:diff: (directive option)

literalinclude (directive), 258
:emphasize-lines: (directive option)

code-block (directive), 257
literalinclude (directive), 257

:lineno-start: (directive option)
code-block (directive), 257

:linenos: (directive option)
code-block (directive), 257
literalinclude (directive), 257

:py:module:deprecated: (directive option), 259

A
assert, 246
autoclass (directive), 260
autoexception (directive), 260
automodule (directive), 260

B
bdist, 109
build, 109
built distribution, 109

C
CI, 246
cibuildwheel, 109
code-block (directive), 256

:emphasize-lines: (directive option), 257
:lineno-start: (directive option), 257
:linenos: (directive option), 257

conda, 109
content (role), 259
Continuous integration, 246

D
deprecated (directive), 259
devpi, 109
distribution package, 109
distutils, 110
Dummy, 246

Dynamic testing, 153

E
egg, 110
enscons, 110
environment, 265
environment variable

PYTHONSAFEPATH, 82
envvar (role), 259
except, 246
exception, 246

F
Fake, 246
file (role), 259
Flit, 110

G
guilabel (role), 260

H
Hatch, 110
hatchling, 110

I
import package, 110
Integration test, 246

K
kbd (role), 260

L
literalinclude (directive), 257

:diff: (directive option), 258
:emphasize-lines: (directive option), 257
:linenos: (directive option), 257

M
makevar (role), 259
maturin, 110
menuselection (role), 260

285

Python basics, Release 24.1.0

meson-python, 110
Mock, 247
module, 110
multibuild, 110

P
pdm, 111
pex, 111
pip, 111
pip-tools, 111
Pipenv, 111
Pipfile, 111
Pipfile.lock, 111
pipx, 111
piwheels, 111
poetry, 111
pybind11, 112
PyPA, 112
PyPI, 112
pypi.org, 112
pyproject.toml, 112
pytest, 247
Python Enhancement Proposals

PEP 249, 133
PEP 257#specification, 262
PEP 3104, 60
PEP 345, 81
PEP 376, 85
PEP 427, 113
PEP 440, 79
PEP 441, 112
PEP 484, 262
PEP 484#suggested-syntax-for-python-2-7-and-straddling-code,

263
PEP 498, 37
PEP 508#environment-markers, 111
PEP 513, 108
PEP 516, 112
PEP 517, 78, 109, 112
PEP 518, 78, 83, 112
PEP 582, 111
PEP 621, 110, 111
PEP 631, 80
PEP 8, 14, 48
PEP 8#comments, 262

Python Package Index, 112
Python Packaging Authority, 112
PYTHONSAFEPATH, 82

R
readme_renderer, 112
Regression test, 247
release, 112

S
samp (role), 259
scikit-build, 112
sdist, 113
setuptools, 112
shiv, 112
source directory, 265
source distribution, 113
Spack, 113
Static test procedures, 153
Stubs, 247

T
TDD, 247
Test Case, 154
Test Fixture, 154
Test Runner, 154
Test Suite, 154
Test-driven development, 247
trove-classifiers, 113
try, 247
twine, 113

V
venv, 113
Virtual environment, 113
virtualenv, 113

W
Warehouse, 113
wheel, 113
whey, 114

286 Index

	Introduction
	About Python

	Installation
	Editors
	Interactive Shell
	Exiting the interactive shell

	IDLE

	Exploring Python
	help()
	dir(), globals() and locals()

	Style
	Indentation and blocks
	Comments
	Basic Python style

	Variables and expressions
	Variables
	Expressions

	Data types
	Numbers
	Complex numbers
	Built-in numerical functions
	Boolean values
	Advanced numerical functions
	Advanced functions for complex numbers
	Rounding half to even
	Numerical calculations
	Built-in modules for numbers

	Lists
	Summary

	Tuples
	Summary

	Sets
	Summary

	Dictionaries
	setdefault
	Merging dictionaries
	Extensions

	Strings
	string
	re
	print()
	F-Strings
	Debugging F-Strings
	Formatting date and time formats and IP addresses

	Built-in modules for strings

	Files
	Opening files
	Closing files
	Opening files in write or other modes
	Read and write functions
	Using binary mode

	Built-in modules for files

	None
	None is falsy
	None stands for emptiness
	The default return value of a function is None

	Input
	Control flows
	Boolean values and expressions
	if-elif-else statement
	Loops
	while loop
	for loop
	Loops with an index
	List Comprehensions

	Exceptions
	Context management with with

	Functions
	Basic function definitions
	Parameters
	Parameters
	Options for function parameters
	Positional parameters
	Parameter names
	Variable number of arguments
	Mixing argument passing techniques

	Mutable objects as arguments

	Variables
	Local, non-local and global variables

	Decorators
	functools

	Lambda functions

	Modules
	What is a module?
	Creating modules
	Command line arguments
	The argparse module

	Programme libraries
	„Batteries included“
	Managing data types
	String modules
	Modules for data types
	Modules for numbers

	Changing files
	Interacting with the operating system
	Use of Internet protocols
	Developing and debugging

	Adding more Python libraries
	Installing Python libraries with pip and venv
	Installing with the --user option
	Virtual environments
	PyPI

	Packages and programmes
	wheels
	py2exe and py2app
	freeze
	PyInstaller and PyOxidizer
	Briefcase

	Creating a distribution package
	Structure
	pyproject.toml
	Metadata
	Optional dependencies

	src package
	Other files
	CONTRIBUTORS.rst
	LICENSE
	README.rst
	CHANGELOG.rst

	Historical files or files needed for binary extensions
	setup.py
	setup.cfg
	MANIFEST.in

	Build
	Testing

	GitLab Package Registry
	Authentication
	… with a personal access token
	… with a deploy token
	… with a job token
	… for access to packages within a group

	Publishing the distribution package
	Installing the package

	Templating
	CookieCutter features
	Available templates
	Python
	Ansible
	C
	C++
	Scala
	LaTeX/XeTeX

	Overview
	Installation
	Requirements
	Installation

	Advanced usage
	Hooks
	User config
	Replay
	Selection variables

	cruft
	Installation
	Create a new project
	Updating a project
	Checking a project
	Linking an existing project
	Show diff

	Upload package
	Check
	Installation
	README

	PyPI
	GitHub Action
	Trusted Publishers

	cibuildwheel
	GitHub Actions
	GitLab CI/CD
	Optionen
	Examples

	Binary Extensions
	Use Cases
	Disadvantages
	Alternatives
	… to accelerator modules
	… to wrapper modules
	… for low-level system access

	Implementation
	Creating binary extensions
	Binary extensions for Windows
	Binary Extensions for Linux
	Binary Extensions for Mac

	Deployment of binary extensions

	Glossary

	Object Orientation
	Classes
	Variables
	Instance variables
	Class variables

	Methods
	Static methods
	Class methods

	Inheritance
	Summary
	Private variables and methods
	@property decorator
	Namespaces
	Data types as objects
	Duck typing

	Save and access data
	The Python Database API
	SQLAlchemy
	NoSQL databases
	File system
	Paths and path names
	Absolute and relative paths
	Change path names
	Useful constants and functions
	Getting information about files

	Other file system operations
	Processing all files in a directory

	The pickle module
	The xml module
	Working with minidom
	Parsing with ElementTree

	The sqlite module
	Create a database
	Create data
	Create data from csv
	Query data
	Update data
	Delete data
	Normalising the data
	Example

	Query normalised data
	The psycopg module

	dataclasses
	Testing
	Unittest
	Example

	Example: Testing an SQLite database
	Doctest
	Hypothesis
	pytest
	Features
	Installation
	Examples
	Execute pytest
	Test results

	Writing test functions
	assert statements
	Failing with pytest.fail() and exceptions
	Writing assertion helper functions
	Testing for expected exceptions

	Structure test suite
	Grouping tests with classes
	Executing a subset of tests

	Test fixtures
	First steps with fixtures
	Using fixtures for setup and teardown
	Show fixture execution with --setup-show
	Defining the scope of a fixture
	Sharing fixtures with conftest.py
	Find where fixtures are defined
	Using multiple fixture levels
	Using multiple fixtures per test or fixture
	Set fixture scope dynamically
	autouse for fixtures that are always used
	Rename fixtures

	Built-in fixtures
	tmp_path and tmp_path_factory
	capsys
	monkeypatch
	Remaining built-in fixtures

	Test parameterisation
	Testing without parametrize
	Parameterising functions
	Parameterising fixtures
	Parameterise with pytest_generate_tests

	Markers
	Using built-in markers
	Skipping tests with @pytest.mark.skip
	Conditional skipping of tests with @pytest.mark.skipif
	@pytest.mark.xfail

	Selection of tests with your own markers
	Markers for files, classes and parameters
	Markers together with and, or, not and ()
	--strict-markers
	Combining markers with fixtures
	List markers

	Plugins
	Finding plugins
	Installing plugins
	Plugins for …
	… modified test sequences
	… modified output
	… web development
	… fake data
	… various things

	Own plugins

	Configuration
	Saving settings and options in pytest.ini
	Using other configuration files
	pyproject.toml
	setup.cfg
	Set rootdir
	conftest.py for sharing local fixtures and hook functions
	__init__.py to avoid collision of test file names

	Debugging test failures
	Debugging with pytest options
	Combining pdb and tox
	Overview of the most common pytest debugger options

	Coverage
	Using Coverage.py with pytest-cov
	Generate HTML reports
	Exclude code from test coverage

	Extensions
	Test coverage of all tests with GitHub actions
	Test coverage of all tests with GitHub actions
	Badge

	Mock
	Example
	Testing with Typer
	Mocking of attributes
	Mocking classes and methods
	Synchronising mocks with autospec
	Check call with assert_called_with()
	Create error conditions
	Limitations of mocking
	Avoid mocking with tests on multiple levels
	Plugins to support mocking

	tox
	Introduction to tox
	Setting up tox
	Executing tox
	Testing multiple Python versions
	Running Tox environments in parallel
	Add coverage report in tox
	Set minimum coverage
	Passing pytest parameters to tox
	Running tox with GitHub actions
	Display badge
	Publish test coverage
	Extend tox

	unittest2
	Example
	Installation

	Glossary

	Document
	Create a Sphinx project
	Installation and start
	Sphinx layout
	Generate the documentation

	reStructuredText
	Headlines
	Paragraphs
	Inline markup
	Links
	External links
	Internal links
	Cross-referencing locations
	Section to reference

	Referencing documents
	Download documents

	Images
	Other semantic markup
	File listing
	Menu selections and GUI labels

	Lists
	Numbered lists
	Unnumbered lists
	Definition lists

	Nested lists
	Literal blocks
	Line blocks
	Code blocks
	Tables
	Comments

	Code blocks
	Obsolete code

	Placeholder
	UI elements and interactions
	Directives
	Table of Contents
	Docstrings
	Installation
	Examples
	sphinx-autodoc-typehints
	sphinx.ext.napoleon

	Meta information
	See also
	Glossary

	Intersphinx
	Configuration
	Determine link targets
	Create a link
	Custom links
	Add roles

	Unified Modeling Language (UML)
	Installation
	Sequence diagram
	Use Case diagram
	Activity diagram
	Class diagram

	Extensions
	Built-in extensions
	Third-party extensions
	Own Extensions

	Testing
	Build error
	Check links

	shot-scraper
	Installation
	Use
	GitHub Actions

	Badges
	Sphinx
	Other documentation tools

	Appendix
	Regular expressions
	[]
	Number
	Position
	Link
	Escape characters and literals

	Unicode and character encodings
	The string module
	Unicode
	Unicode and UTF-8

	Encoding and decoding in Python 3
	UTF-16 and UTF-32

	Python 3 and Unicode
	Built-in Python Functions

	Index

